BIT Numerical Mathematics

, Volume 10, Issue 1, pp 38–73 | Cite as

On Nielsen's generalized polylogarithms and their numerical calculation

  • K. S. Kölbig
  • J. A. Mignaco
  • E. Remiddi


The generalized polylogarithms of Nielsen are studied, in particular their functional relations. New integral expressions are obtained, and relations for function values of particular arguments are given. An Algol procedure for calculating 10 functions of lowest order is presented. The numerical values of the Chebyshev coefficients used in this procedure are tabulated. A table of the real zeros of these functions is also given.


Numerical Calculation Computational Mathematic Lower Order Functional Relation Real Zero 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Nielsen,Der Eulersche Dilogarithmus und seine Verallgemeinerungen, Nova Acta, Abh. d. Kaiserl. Leop.-Carol. Deutschen Akademie d. Naturforscher 90 (1909), 123–211.Google Scholar
  2. 2.
    J. A. Mignaco and E. Remiddi,Fourth order vacuum polarization contribution to the 6th order electron magnetic moment, Nuovo Cim. 60A (1969), 519–528.Google Scholar
  3. 3.
    R. Karplus and N. M. Kroll,Fourth-order corrections in quantum electrodynamics and the magnetic moment of the electron, Phys. Rev. 77 (1950), 536–549.Google Scholar
  4. 4.
    G. Källén and A. Sabry,Fourth order vacuum polarization, K. Danske Vidensk. Selsk. Mat.-Fys. Medd. 29 (1955), 1–20.Google Scholar
  5. 5.
    A. Petermann,Fourth order magnetic moment of the electron, Helv. Phys. Acta 30 (1957), 407–408.Google Scholar
  6. 6.
    L. Lewin,Dilogarithms and associated functions, MacDonald London (1958).Google Scholar
  7. 7.
    A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie,An index of mathematical tables, Vol. 1, Blackwell Scientific Publications, Oxford (1962).Google Scholar
  8. 8.
    M. Abramowitz and I. A. Stegun (Edit.),Handbook of mathematical functions, Chapts. 24 and 27, NBS Appl. Math. Ser. 55, U. S. Government Printing Office, Washington, D.C. (1965).Google Scholar
  9. 9.
    R. Karplus and M. Neuman,The scattering of light by light, Phys. Rev. 83 (1951), 776–784.Google Scholar
  10. 10.
    M. S. P. Eastham,On polylogarithms, Proc. Glasgow Math. Assoc. 6 (1964), 169–171.Google Scholar
  11. 11.
    W. Maier and H. Zahn,Über die Funktionalgleichung 2. Stufe des Trilogarithmus, Wiss. Z. Friedrich Schiller Univ. Jena 11 (1962), 109–110.Google Scholar
  12. 12.
    W. Magnus, F. Oberhettinger and R. P. Soni,Formulas and theorems for the special functions of mathematical physics, 3rd Edn., Springer-Verlag, Berlin-Heidelberg-New York (1966).Google Scholar
  13. 13.
    A. Erdélyi (Ed.),Higher transcendental functions, Vol. I, McGraw-Hill, New York-Toronto-London (1953).Google Scholar
  14. 14.
    K. Mitchell,Tables of the function0z(− log|1−y|/y)dy, with an account of some properties of this and related functions, Phil. Mag. 40 (1949), 351–368.Google Scholar
  15. 15.
    A. Jonquière,Über eine Klasse von Transzendenten, welche durch mehrmalige Integration rationaler Funktionen entstehen, Öfversigter of the Stockholm Academy (1888), 522–531.Google Scholar
  16. 16.
    A. Jonquière,Über einige Transzendenten, welche bei der wiederholten Integration rationaler Funktionen auftreten, Bihang of the Stockholm Academy 15 (1889), 1–50.Google Scholar
  17. 17.
    W. Rühl, private communication.Google Scholar
  18. 18.
    G. Wechsung,Über Kummers Funktionalgleichung für den Pentalogarithmus, Jber. Deutsch. Math. Verein 68 (1966), 140–143.Google Scholar
  19. 19.
    K. S. Kölbig,Algorithm 327, Dilogarithm, Comm. ACM 11 (1968), 270.Google Scholar
  20. 20.
    T. Håvie,CHECOF—double precision calculation of the coefficients in a Chebyshev expansion, CERN 6600 Series Program Library C320 (1968), unpublished.Google Scholar
  21. 21.
    K. S. Kölbig,DGAUSS—double precision Gaussian integration, CERN 6600 Series Program Library D109 (1968), unpublished.Google Scholar
  22. 22.
    C. W. Clenshaw, G. F. Miller and M. Woodger,Algorithms for special functions I, Handbook Series Special Functions, Numer. Math. 4 (1963), 403–419.Google Scholar
  23. 23.
    Mathematisch Centrum Amsterdam,Polylogarithms, Report R24 (1954).Google Scholar
  24. 24.
    R. E. Shafer,Tables of polylogarithms etc., M. S. Lawrence Radiation Lab., University of California.Google Scholar
  25. 25.
    I. M. Ryshik and I. S. Gradstein,Tafeln-Tables, VEB Deutscher Verlag d. Wissensch. Berlin 1957.Google Scholar

Copyright information

© BIT Foundations 1970

Authors and Affiliations

  • K. S. Kölbig
    • 1
    • 2
  • J. A. Mignaco
    • 1
    • 2
  • E. Remiddi
    • 1
    • 2
  1. 1.CERNGenevaSwitzerland
  2. 2.University of GenevaSwitzerland

Personalised recommendations