, Volume 16, Issue 4–5, pp 464–497 | Cite as

Randomized search trees

  • R. Seidel
  • C. R. Aragon


We present a randomized strategy for maintaining balance in dynamically changing search trees that has optimalexpected behavior. In particular, in the expected case a search or an update takes logarithmic time, with the update requiring fewer than two rotations. Moreover, the update time remains logarithmic, even if the cost of a rotation is taken to be proportional to the size of the rotated subtree. Finger searches and splits and joins can be performed in optimal expected time also. We show that these results continue to hold even if very little true randomness is available, i.e., if only a logarithmic number of truely random bits are available. Our approach generalizes naturally to weighted trees, where the expected time bounds for accesses and updates again match the worst-case time bounds of the best deterministic methods.

We also discuss ways of implementing our randomized strategy so that no explicit balance information is maintained. Our balancing strategy and our algorithms are exceedingly simple and should be fast in practice.

Key words

Search trees Dictionaries Randomized data structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. M. Adel'son-Velskii and Y. M. Landis, An algorithm for the organization of information,Soviet Math. Dokl,3 (1962), 1259–1262.Google Scholar
  2. [2]
    A. Andersson and T. Ottmann, Faster uniquely represented dictionaries,Proc. 32nd FOCS, 1991, pp. 642–649.Google Scholar
  3. [3]
    H. Baumgarten, H. Jung, and K. Mehlhorn, Dynamic point location in general subdivision,Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms (SODA), 1992, pp. 250–258.Google Scholar
  4. [4]
    R. Bayer and E. McCreight, Organization and maintenance of large ordered indices,Act. Inf.,1 (1972), 173–189.Google Scholar
  5. [5]
    S. W. Bent and J. R. Driscoll, Randomly balanced search trees, Manuscript (1991).Google Scholar
  6. [6]
    S. W. Bent, D. D. Sleator, and R. E. Tarjan, Biased search trees,SIAM J. Comput.,14 (1985), 545–568.Google Scholar
  7. [7]
    R. P. Brent, Fast multiple precision evaluation of elementary functions,J. Assoc. Comput. Mach.,23 (1976), 242–251.Google Scholar
  8. [8]
    M. Brown, Addendum to “A Storage Scheme for Height-Balanced Trees,”Inform. Process. Lett.,8 (1979), 154–156.Google Scholar
  9. [9]
    K. L. Clarkson, K. Mehlhorn, and R. Seidel, Four results on randomized incremental construction,Comput. Geom. Theory Appl.,3 (1993), 185–212.Google Scholar
  10. [10]
    L. Devroye, A note on the height of binary search trees,J. Assoc. Comput. Mach.,33 (1986), 489–498.Google Scholar
  11. [11]
    M. Dietzfelbinger (private communication).Google Scholar
  12. [12]
    I. Galperin and R. L. Rivest, Scapegoat trees,Proc. 4th ACM-SIAM Symp. on Discrete Algorithms (SODA), 1993, pp. 165–174.Google Scholar
  13. [13]
    L. J. Guibas and R. Sedgewick, A dichromatic framework for balanced trees,Proc. 19th FOCS, 1978, pp. 8–21.Google Scholar
  14. [14]
    T. Hagerup and C. Rüb, A guided tour of Chernoff bounds,Inform. Process. Lett.,33 (1989/90), 305–308.Google Scholar
  15. [15]
    K. Hoffman, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan, Sorting Jordan sequences in linear time using level linked search trees,Inform. and Control,68 (1986), 170–184.Google Scholar
  16. [16]
    E. McCreight, Priority search trees,SIAM J. Comput.,14 (1985), 257–276.Google Scholar
  17. [17]
    K. Mehlhorn,Sorting and Searching, Springer-Verlag, Berlin, 1984.Google Scholar
  18. [18]
    K. Mehlhorn,Multi-Dimensional Searching and Computational Geometry, Springer-Verlag, Berlin, 1984.Google Scholar
  19. [19]
    K. Mehlhorn (private communication).Google Scholar
  20. [20]
    K. Mehlhorn and S. Näher, Algorithm design and software libraries: recent developments in the LEDA project, inAlgorithms, Software, Architectures, Information Processing 92, Vol. 1, Elsevier, Amsterdam, 1992.Google Scholar
  21. [21]
    K. Mehlhorn and S. Näher, LEDA, a platform for combinatorial and geometric computing.Commun. ACM,38 (1995), 95–102.Google Scholar
  22. [22]
    K. Mehlhorn and R. Raman (private communication).Google Scholar
  23. [23]
    K. Mulmuley,Computational Geometry: An Introduction through Randomized Algorithms, Prentice-Hall, Englewood Cliffs, NJ, 1994.Google Scholar
  24. [24]
    S. Näher, LEDA User Manual Version 3.0. Tech. Report MPI-I-93-109, Max-Planck-Institut für Informatik, Saarbrücken, 1993.Google Scholar
  25. [25]
    J. Nievergelt and E. M. Reingold, Binary search trees of bounded balance,SIAM J. Comput. 2 (1973), 33–43.Google Scholar
  26. [26]
    W. Pugh, Skip lists: a probabilistic alternative to balanced trees.Commun. ACM,33 (1990), 668–676.Google Scholar
  27. [27]
    W. Pugh and T. Teitelbaum, Incremental computation via function caching,Proc. 16th ACM POPL, 1989, pp. 315–328.Google Scholar
  28. [28]
    D. D. Sleator (private communication).Google Scholar
  29. [29]
    D. D. Sleator and R. E. Tarjan, Self-adjusting binary search trees,J. Assoc. Comput. Mach.,32 (1985), 652–686.Google Scholar
  30. [30]
    R. E. Tarjan (private communication).Google Scholar
  31. [31]
    J. Vuillemin, A unifying look at data structures,Comm. ACM,23 (1980), 229–239.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1996

Authors and Affiliations

  • R. Seidel
    • 1
    • 2
  • C. R. Aragon
    • 3
  1. 1.Computer Science DivisionUniversity of California BerkeleyBerkeleyUSA
  2. 2.Fachberich InformatikUniversität des SaarlandesSaarbruckenGermany
  3. 3.Computer Science DivisionUniversity of California BerkeleyBerkeleyUSA

Personalised recommendations