, Volume 16, Issue 4–5, pp 392–401 | Cite as

A mildly exponential approximation algorithm for the permanent

  • M. Jerrum
  • U. Vazirani


A new approximation algorithm for the permanent of ann ×n 0,1-matrix is presented. The algorithm is shown to have worst-case time complexity exp(O(n1/2 log2n)). Asymptotically, this represents a considerable improvement over the best existing algorithm, which has worst-case time complexity exp(Θ(n)).

Key words

Approximation algorithms Combinatorial enumeration Perfect matchings Permanent Rapidly mixing Markov chains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Z. Broder, How hard is it to marry at random? (On the approximation of the permanent),Proceedings of the 18th ACM Symposium on Theory of Computing, 1986, pp. 50–58. Erratum,Proceedings of the 20th ACM Symposium on Theory of Computing, 1988, p. 551.Google Scholar
  2. [2]
    A. Frieze and M. Jerrum, An analysis of a Monte Carlo algorithm for estimating the permanent,Combinatorica,15 (1995), 67–83.Google Scholar
  3. [3]
    C. D. Godsil and I. Gutman, On the matching polynomial of a graph,Algebraic Methods in Graph Theory, I (L. Lovász and V. T. Sós, editors), Colloquia Mathematica Societatis János Bolyai, Vol. 25, North-Holland, Amsterdam, 1981, pp. 241–249.Google Scholar
  4. [4]
    M. Jerrum, An analysis of a Monte Carlo algorithm for estimating the permanent,Proceedings of the 3rd Conference on Integer Programming and Combinatorial Optimization, CORE, Louvain-la-Neuve, Belgium, April 1993, pp. 171–182.Google Scholar
  5. [5]
    M. Jerrum and A. Sinclair, Approximating the permanent,SIAM Journal on Computing,18 (1989), 1149–1178.Google Scholar
  6. [6]
    M. R. Jerrum, L. G. Valiant, and V. V. Vazirani, Random generation of combinatorial structures from a uniform distribution,Theoretical Computer Science,43 (1986), 169–188.Google Scholar
  7. [7]
    N. Karmarkar, R. Karp, R. Lipton, L. Lovász, and M. Luby, A Monte-Carlo algorithm for estimating the permanent.SIAM Journal on Computing,22 (1993), 284–293.Google Scholar
  8. [8]
    R. M. Karp and M. Luby, Monte Carlo algorithms for enumeration and reliability problems,Proceedings of the 24th IEEE Symposium on Foundations of Computer Science, 1983, pp. 56–64.Google Scholar
  9. [9]
    L. Lovász and M. D. Plummer,Matching Theory, North-Holland, Amsterdam, 1986.Google Scholar
  10. [10]
    H. Minc,Permanents, Addison-Wesley, Reading, MA, 1978.Google Scholar
  11. [11]
    A. Sinclair,Randomised Algorithms for Counting and Generating Combinatorial Structures, Ph.D. Thesis, University of Edinburgh, June 1988.Google Scholar
  12. [12]
    A. Sinclair,Algorithms for Random Generation and Counting: a Markov Chain Approach, Birkhäuser, Boston, 1993.Google Scholar
  13. [13]
    L. G. Valiant, The complexity of computing the permanent,Theoretical Computer Science,8 (1979), 189–201.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1996

Authors and Affiliations

  • M. Jerrum
    • 1
  • U. Vazirani
    • 2
  1. 1.Department of Computer ScienceUniversity of EdinburghEdinburghScotland
  2. 2.Department of Computer ScienceUniversity of CaliforniaBerkeleyUSA

Personalised recommendations