Experientia

, Volume 42, Issue 9, pp 977–985

Cell-extracellular matrix interactions in morphogenesis: an in vitro approach

  • R. Montesano
Reviews

Summary

We briefly review evidence from in vitro models that supports a role for the extracellular matrix in two essential steps of organogenesis: the establishment of appropriate three-dimensional cell-to-cell relationships, and the determination of a correct cell polarity.

Key words

Cell culture organogenesis collagen endocrine pancreas cell polarity LLC-PK cells endothelial cells angiogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aplin, J.D., and Hughes, R.C., Complex carbohydrates of the extracellular matrix. Structures, interactions and biological roles. Biochim. biophys. Acta694 (1982) 375–418.PubMedGoogle Scholar
  2. 2.
    Bard, J.B.L., and Hay, E.D., The behavior of fibroblasts from the developing avian cornea: their morphology and movement in situ and in vitro. J. Cell Biol.67 (1975) 400–418.CrossRefPubMedGoogle Scholar
  3. 3.
    Barrett, A.J., The many forms and functions of cellular proteinases. Fedn Proc.39 (1980) 9–14.Google Scholar
  4. 4.
    Bennett, D.C., Morphogenesis of branching tubules in cultures of cloned mammary epithelial cells. Nature285 (1980) 657–659.CrossRefPubMedGoogle Scholar
  5. 5.
    Bernfield, M., Banerjee, S.D., Koda, J.E., and Rapraeger, A.C., Remodeling of the basement membrane as a mechanism of morphogenetic tissue interaction, in: The Role of the Extracellular Matrix in Development, p. 545–572. Ed. R.L. Trelstad. Alan R. Liss, Inc., New York 1984.Google Scholar
  6. 6.
    Bissell, M.J., Hall, H.G., and Parry, G., How does the extracellular matrix direct gene expression? J. theor. Biol.99 (1982) 31–68.CrossRefPubMedGoogle Scholar
  7. 7.
    Blumberg, P.M., In vitro studies on the mode of action of the phorbol esters, potent tumor promoters. CRC Crit. Rev. Toxic.8 (1980) 153–197.Google Scholar
  8. 8.
    Chambard, M., Gabrion, J., and Mauchamp, J., Influence of collagen gel on the orientation of cell polarity: follicle formation from isolated thyroid cells and from preformed monolayers. J. Cell Biol.91 (1981) 157–166.CrossRefPubMedGoogle Scholar
  9. 9.
    Elsdale, T., and Bard, J., Collagen substrata for studies on cell behavior. J. Cell Biol.54 (1972) 626–637.CrossRefPubMedGoogle Scholar
  10. 10.
    Fett, J.W., Strydom, D.J., Lobb, R.R., Alderman, E.M., Bethune, J.L., Riordan, J.F., and Vallee, B.L., Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry24 (1985) 5480–5486.CrossRefPubMedGoogle Scholar
  11. 11.
    Folkman, J., Tumor angiogenesis. Adv. Cancer Res.43 (1985) 175–203.PubMedGoogle Scholar
  12. 12.
    Folkman, J., and Haudenschild, C.C., Angiogenesis in vitro. Nature288 (1980) 551–556.CrossRefPubMedGoogle Scholar
  13. 13.
    Folkman, J., Haudenschild, C.C., and Zetter, B.R., Long-term culture of capillary endothelial cells. Proc. natn. Acad. Sci. USA76 (1979) 5217–5221.Google Scholar
  14. 14.
    Grobstein, C., Tissue interaction in the morphogenesis of mouse embryonic rudiments in vitro, in: Aspects of Synthesis and Order in Growth, p. 233–256. Ed. G. Rudnick. Princeton University Press, Princeton, NJ, 1954.Google Scholar
  15. 15.
    Gross, J.L., Moscatelli, D., Jaffe, E.A., and Rifkin, D.B., Plasminogen activator and collagenase production by cultured capillary endothelial cells. J. Cell Biol.95 (1982) 974–981.CrossRefPubMedGoogle Scholar
  16. 16.
    Hall, H.G., Farson, D.A., and Bissell, M.J., Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc. natn. Acad. USA79 (1982) 4672–4676.Google Scholar
  17. 17.
    Hay, E.D., Collagen and embryonic development, in: Cell Biology of Extracellular Matrix, p. 379–409. Ed. E.D. Hay, Plenum Press, New York 1981.Google Scholar
  18. 18.
    Heathcote, J.G., and Grant, M.E., The molecular organization of basement membranes. Int. Rev. conn. Tissue Res.9 (1981) 191–264.Google Scholar
  19. 19.
    Hynes, R.O., Fibronectin and its relation to cellular structure and behavior, in: Cell Biology of Extracellular Matrix, p. 295–334. Ed. E.D. Hay. Plenum Press, New York 1981.Google Scholar
  20. 20.
    Kleinman, H.K., Klebe, R.J., and Martin, G.R., Role of collagenous matrices in the adhesion and growth of cells. J. Cell Biol.88 (1981) 473–485.PubMedGoogle Scholar
  21. 21.
    Lambert, A.E., Blondel, B., Kanazawa, Y., Orci, L., and Renold, A.E., Monolayer cell culture of neonatal rat pancreas: light microscopy and evidence for immunoreactive insulin synthesis and release. Endocrinology90 (1972) 239–248.PubMedGoogle Scholar
  22. 22.
    Montesano, R., Mouron, P., Amherdt, M., and Orci, L., Collagen matrix promotes reorganization of pancreatic endocrine cell monolayers into islet-like organoids. J Cell Biol.97 (1983) 935–939.CrossRefPubMedGoogle Scholar
  23. 23.
    Montesano, R., and Orci, L., Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell42 (1985) 469–477.CrossRefPubMedGoogle Scholar
  24. 24.
    Montesano, R., Orci, L., and Vassalli, P., In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell Biol.97 (1983) 1648–1652.CrossRefPubMedGoogle Scholar
  25. 25.
    Mollenhauer, J., Bee, J.A., Lizarbe, M.A., and Von der Mark, K., Role of anchorin C II, a 31,000-mol.-wt membrane protein, in the interaction of chondrocytes with type II collagen. J. Cell Biol.98 (1984) 1572–1578.PubMedGoogle Scholar
  26. 26.
    Mullins, D.E., and Rohrlich, S.T., The role of proteinases in cellular invasiveness. Biochim. biophys. Acta695 (1983) 177–214.PubMedGoogle Scholar
  27. 27.
    Nishizuka, Y., The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature308 (1978) 693–698.CrossRefGoogle Scholar
  28. 28.
    Orci, L., Macro- and micro-domains in the endocrine pancreas. Diabetes31 (1982) 538–565.PubMedGoogle Scholar
  29. 29.
    Ormerod, E.J., and Rudland, P.S., Mammary gland morphogenesis in vitro: formation of branched tubules in collagen gels by a cloned rat mammary cell line. Devl Biol.91 (1982) 360–375.CrossRefGoogle Scholar
  30. 30.
    Reddi, A.H., Extracellular matrix and development, in: Extracellular matrix biochemistry, p. 375–412. Eds K.A. Piez and A.H. Reddi. Elsevier, New York 1984.Google Scholar
  31. 31.
    Rubin, K., Höök, M., Obrink, B., and Timpl, R., Substrate adhesion of rat hepatocytes: mechanism of attachment to collagen substrates. Cell24 (1981) 463–470.PubMedGoogle Scholar
  32. 32.
    Ruoslahti, E., Engvall, E., and Hayman, E.G., Fibronectin: current concepts of its structure and functions. Coll. Res.1 (1981) 95–128.Google Scholar
  33. 33.
    Schor, A.M., and Schor, S.L., Tumor angiogenesis. J. Path.141 (1983) 385–413.CrossRefPubMedGoogle Scholar
  34. 34.
    Toole, B.P., Glycosaminoglycans in morphogenesis, in: Cell Biology of Extracellular Matrix, p. 259–294. Ed. E.D. Hay, Plenum Press, New York 1981.Google Scholar
  35. 35.
    Vallee, B.L., Riordan, J.F., Lobb, R.R., Higashi, N., Fett, J.W., Crossley, G., Buhler, R., Budzik, G., Breddane, K., Bethune, J.L., and Alderman, E.M., Tumor-derived angiogenesis factors from rat Walker 256 carcinoma: an experimental investigation and review. Experientia41 (1985) 1–15.PubMedGoogle Scholar
  36. 36.
    Wohlwend, A., Montesano, R., Vassalli, J.-D., and Orci, L., LLC-PK2 cysts: a model for the study of epithelial polarity. J. cell. Physiol.125 (1985) 533–539.PubMedGoogle Scholar
  37. 37.
    Yamada, K.M., Akiyama, S.K., Hasegawa, T., Hasegawa, E., Humphries, M.J., Kennedy, D.W., Nagata, K., Urushihara, H., Olden, K., and Chen, W.T., Recent advances in research on fibronectin and other cell attachment proteins. J. Cell Biochem.28 (1985) 79–97.CrossRefPubMedGoogle Scholar
  38. 38.
    Yang, J., and Nandi, S., Growth of cultured cells using collagen as substrate. Int. Rev. Cytol.81 (1983) 249–286.PubMedGoogle Scholar
  39. 39.
    Yang, J., Richards, J., Bowman, P., Guzman, R., Enami, J., McKormick, K., Hamamoto, S., Pitelka, D., and Nandi, S., Sustained growth and three-dimensional organization of primary mammary tumor epithelial cells embedded in collagen gels. Proc. natn. Acad. Sci. USA76 (1979) 3401–3405.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1986

Authors and Affiliations

  • R. Montesano
    • 1
  1. 1.Institute of Histology and EmbryologyUniversity of Geneva, Medical SchoolGeneva 4(Switzerland)

Personalised recommendations