Advertisement

The Journal of Membrane Biology

, Volume 54, Issue 2, pp 141–148 | Cite as

Perturbations of membrane structure by optical probes: II. Differential scanning calorimetry of dipalmitoyllecithin and its analogs interacting with merocyanine 540

  • Peter I. Lelkes
  • Diana Bach
  • Israel R. Miller
Article

Summary

Differential scanning calorimetry of multilamellar liposomes, interacting with the optical probe Merocyanine 540, yields quantitative information about perturbances of the bilayer structure induced by this dye. At low dye: lipid ratios, the dye perturbs primarily its own microenvironment, which is laterally separated from the unmodified lipid domain and exhibits modified thermotropic properties. A further increase in the dye concentration results in a perturbance of the whole lipid bilayer. The degree of perturbance is sensitive to structural modifications in the head-group region of the lipids. It is concluded that Merocyanine 540 reports in every case, even at infinite dilution, on localized events originating from a perturbed microenvironment.

Key words

Optical probes lipid bilayer differential scanning calorimetry structural perturbance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiuchi, T., Kobatake, Y. 1979. Electrostatic interaction between Merocyanine 540 and liposomal and mitochondrial membranes.J. Membrane Biol. 45:233Google Scholar
  2. Bach, D., Bursuker, I., Eibl, H., Miller, I.R. 1978. Differential scanning calorimetry of dipalmitoyllecithin analogues and of their interaction products with basic polypeptides.Biochim. Biophys. Acta 514:310Google Scholar
  3. Bach, D., Chapman, D. 1979. Calorimetric studies of biomembranes and their molecular components.In: Microcalorimetry. A.E. Beezer, editor, pp. 275–309. Academic Press, New YorkGoogle Scholar
  4. Cadenhead, D.A., Kellner, B.M.J., Jacobson, K., Papahadjopoulos, D. 1977. Fluorescent probes in model membranes. I: Anthroyl fatty acid derivatives in monolayers and liposomes of dipalmitoylphosphatidylcholine.Biochemistry 16:5386Google Scholar
  5. Clarke, R.F.L., Nakai, S. 1972. Fluorescent studies ofk-casein with 8-anilinonaphthalene-1-sulfonate.Biochim. Biophys. Acta 257:61Google Scholar
  6. Diembeck, W. 1976. Künstliche Phospholipide mit vergrößertem Phosphor-Stickstoff-Abstand. PhD. Thesis. Technische Universität, Blaunschweig, W. GermanyGoogle Scholar
  7. Diembeck, W., Eibl, H. 1979. Synthesis of phospholipid analogues. Variation of the P-N distance.Chem. Phys. Lipids 24:237Google Scholar
  8. Gabel, D., Steinberg, I.Z., Katchalski, E. 1971. Changes in conformation of insolubilized trypsin and chymotrypsin, followed by fluorescence.Biochemistry 10:4661Google Scholar
  9. Hartmann, W., Galla, H.-J., Sackmann, E. 1977. Direct evidence of charge-induced lipid domain structure in model membranes.LEBS Lett. 78:169Google Scholar
  10. Haynes, D.H. 1974. I-Anilino-8-naphthalenesulfonate: A fluorescent indicator of ion binding and electrostatic potential on the membrane surface.J. Membrane Biol. 17:341Google Scholar
  11. Haynes, D.H., Simkowitz, P. 1977. l-Anilino-8-naphthalenesulfonate: A fluorescent probe of ion and ionophore transport kinetics and trans-membrane asymmetry.J. Membrane Biol. 33:63Google Scholar
  12. Jacobson, K., Papahadjopoulos, D. 1975. Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations.Biochemistry 14:152Google Scholar
  13. Jain, M.K., Wu, N.M. 1977. Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer: III. Phase transition in lipid bilayer.J. Membrane Biol. 34:157Google Scholar
  14. Lelkes, P.I., Kapitkovsky, A., Eibl, H. Miller I.R. 1979. Head-group-dependent modulation of phase transition in dipalmitoyllecithin analogs: A fluorescence depolarization study.FEBS Lett. 103:181Google Scholar
  15. Lelkes, P.I., Miller, I.R. 1980. Perturbations of membrane structure by optical probes. I. Location and structural sensitivity of Merocyanine 540 bound to phospholipid membranes.J. Membrane Biol. 52:1Google Scholar
  16. Lentz, B.R., Freire, E., Biltonen, R.L. 1978. Fluorescence and calorimetric studies of phase transitions in phosphatidylcholine multilayers: Kinetics of the pretransition.Biochemistry 17:4475Google Scholar
  17. Marsh, D., Watts, A., Knowles, P.F. 1976. Evidence for phase boundary lipid. Permeability of tempo-choline into dimyristoyl-phosphatidylcholine vesicles at the phase transition.Biochemistry 15:3570Google Scholar
  18. Radda, G.K. 1975. Fluorescence probes in membrane studies.In: Methods in Membrane Biology. E.D. Korn, editor. Vol. 4, p. 97. Plenum Press, New YorkGoogle Scholar
  19. Russell, J.T., Beeler, T., Martonosi, A. 1979. Optical probe responses on sarcoplasmic reticulum. Merocyanine and oxanol dyes.J. Biol. Chem. 254:0247Google Scholar
  20. Sackmann, E., Träuble, H. 1972. Studies of the crystalline-liquid phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition.J. Am. Chem. Soc. 94:4482Google Scholar
  21. Sturtevant, J.M. 1974. Some applications of calorimetry in biochemistry and biology.Ann. Rev. Biophys. Bioeng 3:35Google Scholar
  22. Suurkuusk, J., Lentz, B.R., Barenholz, Y., Biltonen, R.L., Thompson, T.E. 1976. A calorimetric and fluorescent probe study of the gel-liquid crystalline phase transition in small, singlelamellar dipalmitoylphosphatidylcholine vesicles.Biochemistry 15:1393Google Scholar
  23. Teissié, J., Tocanne, J.F., Baudras, A. 1976. Phase transitions in phospholipid monolayers at the air-water interface: a fluorescence study.FEBS Lett. 70:123Google Scholar
  24. Träuble, H., Overath, P. 1973. The structure ofEscherichia coli membranes studied by fluorescence measurements of lipid phase transitions.Biochim. Biophys. Acta 307:491Google Scholar
  25. Tsong, T.Y. 1975. Effect of phase transition on the kinetics of dye transport in phospholipid bilayer structures.Biochemistry 14:5409Google Scholar
  26. Vanderkooi, J., Martonosi,, A. 1969. Sarcoplasmatic reticulum. VIII. Use of 8-anilino-1-naphthalene sulfonate as conformational probe on biological membranes.Arch. Biochem. Biophys. 133:153Google Scholar
  27. Waggoner, A. 1976. Optical probes of membrane potential.J. Membrane Biol. 27:317Google Scholar
  28. Waggoner, A., Grinvald, A. 1977. Mechanism of rapid optical changes of potential sensitive dyes.Ann. N.Y. Acad. Sci. 303:217Google Scholar
  29. West, W., Caroll, B.H. 1966. Spectral sensitivity and the mechanism of spectral sensitization.In: The Theory of the Photographic Process. (3rd ed.) T.J. James, editor. p. 233. Maemillan, New YorkGoogle Scholar
  30. Witz, G., Van Duuren, B.L. 1973. Hydrophobic fluorescence probe studies with poly-l-lysine.J. Phys. Chem. 77:648Google Scholar
  31. Wu, E.-S., Jacobson, K., Szoka, F., Portis, A., Jr. 1978. Lateral diffusion of a hydrophobic peptide,n-4-nitrobenz-2-oxa-1,3-diazole gramicidin S, in phospholipid multibilayers.Biochemistry 17:5543Google Scholar

Copyright information

© Springer-Verlag New York Inc 1980

Authors and Affiliations

  • Peter I. Lelkes
    • 1
  • Diana Bach
    • 1
  • Israel R. Miller
    • 1
  1. 1.Department of Membrane ResearchThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations