, Volume 46, Issue 7, pp 710–713 | Cite as

Possible involvement of indolamines in the glycogenic effect of the convulsant methionine sulfoximine in rat brain

  • T. K. Hevor
  • P. Delorme
Research Articles


The aim of the present investigation was to look for the mechanisms causing disturbances in carbohydrate metabolism during the action of the epileptogenic agent methionine sulfoximine The levels of glucose, glycogen, and indolamines were measured in seven different regions of rat brain. Methionine sulfoximine induced a decrease in serotonin level which was roughly dose-dependent. There were no obvious, changes in tryptophan and 5-hydroxyindoleacetic levels in any area. Methionine sulfoximine induced the known increase in glucose and glycogen levels. The direct precursor of serotonin, 5-hydroxytryptophan, and benserazide (a decarboxylase inhibitor) were then injected into rats in association with methionine sulfoximine. In this case, methionine sulfoximine failed to induce seizures. Moreover, the serotonin level was unchanged and the carbohydrate content did not significantly increase. There was only a rise in 5-hydroxyindoleacetic acid level. This work shows a striking parallelism between serotonin decrease and glycogen increase.

Key words

Methionine sulfoximine epileptogenesis serotonin glycogen glucose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Folbergrova, J., J. Neurochem.20 (1973) 547.PubMedGoogle Scholar
  2. 2.
    Phelps, G. C., J. Neurocytol.4 (1975) 479.PubMedGoogle Scholar
  3. 3.
    Horton, R. W., and Meldrum, B. S., J. Neurochem.26 (1976) 805.PubMedGoogle Scholar
  4. 4.
    Hevor, T. K., and Gayet, J., J., Brain Res.150 (1978) 210.Google Scholar
  5. 5.
    Hevor, T. K., and Gayet, J., J. Neurochem.36 (1981) 949.PubMedGoogle Scholar
  6. 6.
    Hevor, T. K., Delorme, P., and Beauvillain, J. C., J. cereb. Blood Flow Metab.6 (1986) 292.PubMedGoogle Scholar
  7. 7.
    Delorme, P., and Hevor, T. K., Neuropath. appl. Neurobiol.11 (1985) 117.Google Scholar
  8. 8.
    Quach T. T., Rose, C., Duchemin, A. M., and Schwartz, J. C., Nature298 (1982) 373.PubMedGoogle Scholar
  9. 9.
    Pennington, A. J., and Pentreath, V. W., J. Physiol. (Paris)82 (1987) 218.Google Scholar
  10. 10.
    Magistretti, P. J., Diabète Métabol.4 (1988) 237.Google Scholar
  11. 11.
    Cudennec, A., Duverger, D., Serrano, A., Scatton, B., and MacKenzie, E. T., Brain Res.444 (1988) 227.PubMedGoogle Scholar
  12. 12.
    Sellinger, O. Z., and Dietz, D. D., Exp. Ther.216 (1981) 77.Google Scholar
  13. 13.
    Blizard, D. A. and Balkoski, V., Neuropharmac.21 (1982) 27.Google Scholar
  14. 14.
    Glowinski, J., and Iversen, L. L., J. Neurochem.13 (1966) 655.PubMedGoogle Scholar
  15. 15.
    Mefford, I. N., J. Neurosci. Meth.3 (1981) 207.Google Scholar
  16. 16.
    Bergmeyer, H. U., and Bernt, E., in: Methods of Enzymatic Analysis, p. 1205. Ed. H. U. Bergmeyer Academic Press, New York 1974.Google Scholar
  17. 17.
    Keppler, D., and Decker, K., in: Methods of Enzymatic Analysis, p. 1127. Ed. H. U. Bergmeyer. Academic Press, New York 1974.bGoogle Scholar
  18. 18.
    Lowry, O., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. biol. Chem.193 (1951) 265.PubMedGoogle Scholar
  19. 19.
    Miller, G. L., Analyt. Chem.31 (1959) 964.bGoogle Scholar
  20. 20.
    Rizzuto, N., and Gonatas, N. K., J. Neuropath. exp. Neurol33 (1974) 237.PubMedGoogle Scholar
  21. 21.
    Berel, A., Thèse de Doctorat de 3e cycle, Université de Nancy 1, 1978.Google Scholar
  22. 22.
    Hevor, T. K., and Gayet, J., Biochem. Pharmac.28 (1979) 3507.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1990

Authors and Affiliations

  • T. K. Hevor
    • 1
  • P. Delorme
    • 1
  1. 1.Laboratoire de Neurobiologie FonctionnelleUniversité des Sciences et Techniques de Lille Flandres-ArtoisVilleneuve d'Ascq(France)

Personalised recommendations