Experientia

, Volume 46, Issue 6, pp 617–630

Functions of fatty acid binding proteins

  • R. M. Kaikaus
  • N. M. Bass
  • R. K. Ockner
Article

Summary

Cytosolic fatty acid binding proteins (FABP) belong to a gene family of which eight members have been conclusively identified. These 14–15 kDa proteins are abundantly expressed in a highly tissue-specific manner. Although the functions of the cytosolic FABP are not clearly established, they appear to enhance the transfer of long-chain fatty acids between artificial and native lipid membranes, and also to have a stimulatory effect on a number of enzymes of fatty acid metabolism in vitro. These findings, as well as the tissue expression, ligand binding properties, ontogeny and regulation of these proteins provide a considerable body of indirect evidence supporting a broad role for the FABP in the intracellular transport and metabolism of long-chain fatty acids. The available data also support the existence of structure- and tissue-specific specialization of function among different members of the FABP gene family. Moreover, FABP may also have a possible role in the modulation of cell growth and proliferation, possibly by virtue of their affinity for ligands such as prostaglandins, leukotrienes and fatty acids, which are known to influence cell growth activity. FABP structurally unrelated to the cytosolic gene family have also been identified in the plasma membranes of several tissues (FABPpm). These proteins have not been fully characterized to date, but strong evidence suggests that they function in the transport of long-chain fatty acids across the plasma membrane.

Key words

Fatty acid binding protein carrier proteins long-chain fatty acid liver intestine myocardium adipose tissue fatty acid metabolism cell growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Bansal, M. P., Cook, R. G., Danielson, K. G., and Medina, D., A 14-kilodalton selenium-binding protein in mouse liver is fatty acidbinding protein. J. biol. Chem.264 (1989) 13780–13784.Google Scholar
  2. 2.
    Barbour, R. L., and Chan, S. M. P., Regulation of palmitoyl-CoA inhibition of mitochondrial adenine nucleotide transport by cytosolic fatty acid binding protein. Biochem. biophys. Res. Commun.89 (1979) 1168–1177.Google Scholar
  3. 3.
    Bass, N. M., Function and regulation of hepatic and intestinal fatty acid binding proteins. Chem. Phys. Lipids38 (1985) 95–114.Google Scholar
  4. 4.
    Bass, N. M., Organization and zonation of hepatic lipid metabolism. Cell Biol. Rev.19 (1989) 61–86.Google Scholar
  5. 5.
    Bass, N. M., The cellular fatty acid-binding proteins. Aspects of structure, regulation, and function. Int. Rev. Cytol.3 (1988) 143–184.Google Scholar
  6. 6.
    Bass, N. M., Barker, M. E., Manning, J. A., Jones, A. L., and Ockner, R. K., Acinar heterogeneity of fatty acid binding protein expression in the livers of male, female and clofibrate-treated rats. Hepatology9 (1989) 12–21.Google Scholar
  7. 7.
    Bass, N. M., Kaur, S., Manning, J., Medzihradszky, K., Gibson, B. W., Luer, K., and Burlingame, A. L., Elasmobranch liver contains a fatty acid binding protein (FABP) with primary structure related to mammalian heart FABP and myelin P2 protein. Hepatology10 (1989) 591 (abstr.)Google Scholar
  8. 8.
    Bass, N. M., and Manning, J. A., Tissue expression of three structurally different fatty acid binding proteins from rat heart muscle, liver and intestine. Biochem. biophys. Res. Commun.137 (1986) 929–935.Google Scholar
  9. 9.
    Bass, N. M., Manning, J. A., and Ockner, R. K., Hepatic zonal uptake of a fluorescent fatty acid derivative is determined by velocity and direction of flow. Gastroenterology90 (1986) 1710 (abstr.).Google Scholar
  10. 10.
    Bass, N. M., Manning, J. A., Ockner, R. K., Gordon, J. I., Seetharam, S., and Alpers, D. H., Regulation of the biosynthesis of two distinct fatty acid-binding proteins in rat liver and intestine. Influences of sex differences and of clofibrate. J. biol. Chem.260 (1985) 1432–1436.Google Scholar
  11. 11.
    Bass, N. M., Raghupathy, E., Rhoads, D. E., Manning, J. A., and Ockner, R. K., Partial purification of molecular weight 12000 fatty acid binding protein from rat brain and their effect on synaptosomal Na+-dependent amino acid uptake. Biochemistry23 (1984) 6539–6544.Google Scholar
  12. 12.
    Bassuk, J. A., Tsichlis, P. N., and Sorof, S., Liver fatty acid binding protein is the mitosis-associated polypeptide target of a carcinogen in rat hepatocytes. Proc. natl Acad. Sci. USA84 (1987) 7547–7551.Google Scholar
  13. 13.
    Behlke, J., Mieth, M., Böhmer, F.-D., and Grosse, R., Hydrodynamic and circular dichroic analysis of mammary-derived growth inhibitor. Biochem. biophys. Res. Commun.161 (1989) 363–370.Google Scholar
  14. 14.
    Berk, P. B., Potter, B. J., Sorrentino, D., Stremmel, W., Stump, D., Kiang, C.-L., and Zhou, S.-L., Characteristics of organic anion binding proteins from rat liver sinusoidal plasma membranes, in: Hepatic Transport in Organic Substances, pp. 195–210. Eds E. Petzinger, R. K.-H. Kinne and H. Sies. Springer-Verlag, Berlin, Heidelberg 1989.Google Scholar
  15. 15.
    Bernier, M., Laird, D. M., and Lane, M. D., Insulin-activated tyrosine phosphorylation of a 15-kilodalton protein in intact 3T3-L1 adipocytes. Proc. natl Acad. Sci. USA84 (1987) 1844–1848.Google Scholar
  16. 16.
    Bernlohr, D. A., Doering, T. L., Kelly, T. J., and Lane, M. D., Tissue-specific expression of p422 protein, a putative lipid carrier, in mouse adipocytes. Biochem. biophys. Res. Commun.132 (1985) 850–855.Google Scholar
  17. 17.
    Bernlohr, D. A., Angus, C. W., Lane, M. D., Bolanowski, M. A., and Kelly, T. J. Jr, Expression of specific mRNAs during adipose differentiation. Identification of an mRNA encoding a homologue of myelin P2 protein. Proc. natl Acad. Sci. USA81 (1984) 5468–5472.Google Scholar
  18. 18.
    Billich, S., Wissel, T., Kratzin, H., Hahn, U., Hagenhoff, B., Lezius, A. G., and Spener, F., Cloning of a full-length complementary DNA for fatty acid binding protein from bovine heart. Eur. J. Biochem.175 (1988) 549–556.Google Scholar
  19. 19.
    Böhmer, F.-D., Kraft, R., Otto, A., Wernstedt C., Hellman, U., Kurtz, A., Müller, T., Rohde, K., Ethold, G., Lehmann, W., Langen, A., Heldin, C.-H., and Grosse, R., Identification of a polypeptide growth inhibitor from bovine mammary gland. J. biol. Chem.262 (1987) 15137–15143.Google Scholar
  20. 20.
    Böhmer, F.-D., Mieth, M., Reichmann, G., Taube, C., Grosse, R., and Hollenberg, M. D., A polypeptide growth inhibitor isolated from lactating bovine mammary gland (MDGI) is a lipid-carrying protein. J. cell. Biochem.38 (1988) 199–204.Google Scholar
  21. 21.
    Böhmer, F.-D., Sun, Q., Pepperle, M., Müller, T., Eriksson, U., Wang, J. L., and Grosse, R., Antibodies against Mammary-Derived Growth Inhibitor (MDGI) react with a fibroblast growth inhibitor and with heart fatty acid binding protein. Biochem. biophys. Res. Commun.148 (1987) 1425–1431.Google Scholar
  22. 22.
    Borchers, T., Unterberg, C., Rudel, H., Robenek, H., and Spener, F., Subcellular distribution of cardiac fatty acid binding protein in bovine heart muscle and quantitation with an enzyme-linked immunosorbent assay. Biochim. biophys. Acta1002 (1989) 54–61.Google Scholar
  23. 23.
    Bordewick, U., Heese, M., Borchers, T., Robenek, H., and Spener, F., Compartmentation of hepatic fatty-acid-binding protein in liver cells and its effects on mitochondrial phosphatidic acid biosynthesis. Biol. Chem. Hoppe-Seyler370 (1989) 229–238.Google Scholar
  24. 24.
    Boscá, L., Diaz-Guerra, M. J. M., and Mojena, M., Oleate-induced translocation of protein kinase C to hepatic microsomal membranes. Biochem. biophys. Res. Commun.160 (1989) 1243–1249.Google Scholar
  25. 25.
    Brecher, P., Saouaf, R., Sugarman, J. M., Eisenberg, D., and LaRosa, K., Fatty acid transfer between multilamellar liposomes and fatty acid binding proteins. J. biol. Chem.259 (1984) 13395–13401.Google Scholar
  26. 26.
    Bronfman, M., Amigo, L., and Morales, M. N., Activation of hypolipidaemic drugs to acyl-coenzyme A thioesters. Biochem. J.239 (1986) 781–784.Google Scholar
  27. 27.
    Burnett, D. A., Lysenko, N., Manning, J. A., and Ockner, R. K., Utilization of long chain fatty acids by rat liver. Studies of the role of fatty acid binding protein. Gastroenterology77 (1979) 241–249.Google Scholar
  28. 28.
    Burrier, R. E., and Brecher, P., Binding of lysophosphatidylcholine to the rat liver fatty acid binding protein. Biochim. biophys. Acta879 (1986) 229–239.Google Scholar
  29. 29.
    Burrier, R. E., Manson, C. R., and Brecher, P., Binding of acyl-CoA to liver fatty acid binding protein: effect on acyl-CoA synthesis. Biochim. biophys. Acta919 (1987) 221–230.Google Scholar
  30. 30.
    Burton, P., and Bloch, K., Studies on the mode of action of sterol carrier protein in the dehydrogenation of 5-cholest-7-en-3β-ol. J. biol. Chem.260 (1985) 7289–7294.Google Scholar
  31. 31.
    Cerutti, P. A., Prooxidant states and tumor production. Science227 (1985) 375–381.Google Scholar
  32. 32.
    Chan, L., Wei, C.-F., Li, W. H., Yang, C.-Y., Ratner, P., Pownall, H., Gotto, A. M. Jr, and Smith, L. C., Human liver fatty acid binding protein cDNA and amino acid sequence. Functional and evolutionary implications. J. biol. Chem.260 (1985) 2629–2632.Google Scholar
  33. 33.
    Chytil, F., and Ong, D. E., Intracellular vitamin A-binding proteins. A. Rev. Nutr.7 (1987) 321–335.Google Scholar
  34. 34.
    Cistola, D. P., Sacchettini, J. C., Banaszak, L. J., Walsh, M. T., and Gordon, J. I., Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed inE. coli. J. biol. Chem.264 (1989) 2700–2710.Google Scholar
  35. 35.
    Cistola, D. P., Walsh, M. T., Corey, R. P., Hamilton, J. A., and Brecher, P., Interactions of oleic acid with liver fatty acid binding protein. A carbon-13 NMR study. Biochemistry27 (1987) 711–717.Google Scholar
  36. 36.
    Claffey, K. P., Herrera, V. L., Brecher P., and Ruiz-Opazo, N., Cloning and tissue distribution of rat heart fatty acid binding protein mRNA: identical forms in heart and skeletal muscle. Biochemistry26 (1987) 7900–7904.Google Scholar
  37. 37.
    Collins, D. M., and Hargis, P. S., Distribution of fatty acid binding proteins in tissues and plasma ofGallus domesticus. Comp. Biochem. Physiol. [B]92 (1989) 283–289.Google Scholar
  38. 38.
    Cook, J. S., Lucas, J. J., Sibley, E., Bolanowski, M. A., Christy, R. J., Kelly, T. J., and Lane, M. D., Expression of the differentiation-induced gene for fatty acid-binding protein is activated by glucocorticoid and cAMP. Proc. natl Acad. Sci. USA85 (1988) 2949–2953.Google Scholar
  39. 39.
    Cooper, R., Noy, N., and Zakim, D., A physical-chemical model for cellular uptake of fatty acids. Prediction of intracellular pool sizes. Biochemistry26 (1987) 5890–5896.Google Scholar
  40. 40.
    Craven, P. A., and DeRubertis, F. R., Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation by unsaturated fatty acids. Gastroenterology95 (1988) 676–685.Google Scholar
  41. 41.
    Craven, P. A., Pfansteil, J., and DeRubertis, F. R., Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation and reactive oxygen formation by bile salts. J. clin. Invest.79 (1987) 532–541.Google Scholar
  42. 42.
    Crisman, T. S., Claffey, K. P., Saouaf, R., Hanspal, J., and Brecher, P., Measurement of rat heart fatty acid binding protein by ELISA. Tissue distribution, developmental changes and subcellular distribution. J. molec. cell. Cardiol.19 (1987) 423–431.Google Scholar
  43. 43.
    Daniels, C., Noy, N., and Zakim, D., Rates of hydration of fatty acids bound to unilamellar vesicles of phosphatidylcholine or to albumin. Biochemistry24 (1985) 3286–3292.Google Scholar
  44. 44.
    Das, T., Gourisankar, S., and Mukherjea, M., Human fetal liver fatty acid binding proteins. Role on glucose-6-phosphate dehydrogenase activity. Biochim. biophys. Acta1002 (1989) 164–172.Google Scholar
  45. 45.
    Das, T., Gourisankar, S., and Mukherjea, M., Purification and characterization of fatty acid binding protein from human placenta. Lipids23 (1988) 528–533.Google Scholar
  46. 46.
    Demmer, L. A., Birkenmeier, E. H., Sweetser, D. A., Levin, M. S., Zollman, S., Sparkes, R. S., Mohandas, T., Lusis, A. J., and Gordon, J. I., The cellular retinol binding protein II gene. J. biol. Chem.25 (1987) 2458–2467.Google Scholar
  47. 47.
    Distel, R. J., Ro, H.-S., Rosen, B. S., Groves, D. L., and Spiegelman, B. M., Nucleoprotein complexes that regulate gene expression in adipocyte differentiation: direct participation of c-fos. Cell49 (1987) 835–844.Google Scholar
  48. 48.
    Dutta-Roy, A. K., Gopalswamy, N., and Trulzsch, D. V., Prostaglandin E1 binds to Z protein of rat liver. Eur. J. Biochem.162 (1987) 615–619.Google Scholar
  49. 49.
    Fleischner, G., Meijer, D. K. F., Levine, W. G., Gatmaitan, Z., Gluck, R., and Arias, I. M., Effect of hypolipidemic drugs, nafenopin and clofibrate, on the concentration of ligandin and Z protein in rat liver. Biochem. biophys. Res. Commun.67 (1975) 1401–1407.Google Scholar
  50. 50.
    Fournier, N. C., and Rahim, M., Control of energy production in the heart. A new function for fatty acid binding protein. Biochemistry24 (1985) 2387–2396.Google Scholar
  51. 51.
    Fournier, N. C., and Rahim, M. H., Self-aggregation, a new property of cardiac fatty acid binding protein. J. biol. Chem.258 (1983) 2929–2933.Google Scholar
  52. 52.
    Fournier, N. C., and Richard, M. A., Fatty acid binding protein, a potential regulator of energy production in the heart. J. biol. Chem.263 (1988) 14471–14479.Google Scholar
  53. 53.
    Fournier, N. C., Geoffrey, M., and Deshusses, J., Purification and characterization of a long-chain fatty acid binding protein supplying the mitochondrial β-oxidation system in the heart. Biochim. biophys. Acta533 (1978) 457–464.Google Scholar
  54. 54.
    Fournier, N. C., Zuker, M., Williams, R. E., and Smith, I. C. P., Self-association of the cardiac fatty acid binding protein. Influence on membrane bound, fatty acid dependent enzymes. Biochemistry22 (1983) 1863–1872.Google Scholar
  55. 55.
    Fujii, S., Kawaguchi, H., and Yasuda, H., Fatty acid binding protein in kidney of normotensive and genetically hypertensive rats. Hypertension10 (1987) 93–99.Google Scholar
  56. 56.
    Fujii, S., Kawaguchi, H., and Yasuda, H., Purification and characterization of fatty acid binding protein from rat kidney. Arch. Biochem. Biophys.254 (1987) 552–558.Google Scholar
  57. 57.
    Fukai, F., Kase, T., Shidotani, T., Nagai, T., and Katayama, T., A novel role of fatty acid-binding protein as a vehicle of retinoids. Biochem. biophys. Res. Commun.147 (1987) 899–903.Google Scholar
  58. 58.
    Fukai, F., Kase, T., Shidotani, T., Nagai, T., and Katayama, T., Multiple classes of binding sites for palmitic acid on the fatty acid-binding protein molecule. Biochem. Int.18 (1989) 1101–1105.Google Scholar
  59. 59.
    Gangl, A., and Ockner, R. K., Intestinal metabolism of free fatty acids. Intracellular compartmentation and mechanisms of control. J. clin. Invest.55 (1975) 803–813.Google Scholar
  60. 60.
    Glatz, J. F. C., Janssen, A. M., Baerwaldt, C. C. F., and Veerkamp, J. H., Purification and characterization of fatty acid-binding proteins from rat heart and liver. Biochim. biophys. Acta837 (1985) 57–66.Google Scholar
  61. 61.
    Glatz, J. F. C., Paulussen, R. J. A., and Veerkamp, J. H., Fatty acid binding proteins from the heart. Chem. Phys. Lipids38 (1985) 115–129.Google Scholar
  62. 62.
    Glatz, J. F. C., van Bilsen, M., Paulussen, R. J. A., Veerkamp J. H., van der Vusse, G. J., and Reneman, R. S., Release of fatty acid binding protein from isolated rat heart subjected to ischemia or to the calcium paradox. Biochim. biophys. Acta961 (1988) 148–152.Google Scholar
  63. 63.
    Glatz, J. F. C., and Veerkamp, J. H., Intracellular fatty acid binding protein. Int. J. Biochem.17 (1985) 13–22.Google Scholar
  64. 64.
    Gordon, J. I., Intestinal epithelial differentiation. New insights from chimeric and transgenic mice. J. Cell Biol.108 (1989) 1187–1194.Google Scholar
  65. 65.
    Gordon, J. I., Alpers, D. H., Ockner, R. K., and Strauss, A. W., The nucleotide sequence of rat liver fatty acid binding protein mRNA. J. biol. Chem.258 (1982) 3356–3363.Google Scholar
  66. 66.
    Gordon, J. I., Elshourbagy, N., Lowe, J. B., Liao, W. S., Alpers, D. H., and Taylor, J. M., Tissue specific expression and developmental regulation of two genes coding for rat fatty acid binding proteins. J. biol. Chem.260 (1985) 1995–1998.Google Scholar
  67. 67.
    Gordon, J. I., and Lowe, J. B., Analyzing the structures and functions of two abundant gastrointestinal fatty acid binding proteins with recombinant DNA and computational techniques Chem. Phys. Lipids38 (1985) 137–158.Google Scholar
  68. 68.
    Grabowski, G. A., McCoy, K. E., Williams, G. C., Dempsey, M. E., and Hanson, R. F., Evidence for carrier protein in bile acid synthesis. The effect of squalene and sterol carrier protein and albumin on the activity of 12-α-hydroxylase. Biochim. biophys. Acta441 (1976) 380–390.Google Scholar
  69. 69.
    Grinstead, G. F., Trzakos, J. M., Billheimer, J. T., and Gaylor, J. L., Cytosolic modulators of activities of microsomal enzymes of cholesterol biosynthesis. Effects of acyl-CoA inhibition and cytosolic biosynthesis. Biochim. biophys. Acta751 (1983) 41–51.Google Scholar
  70. 70.
    Haq, R. U., Christodoulides, L., Ketterer, B., and Shrago, E., Characterization and purification of fatty acid binding protein in rat and human adipose tissue. Biochim. biophys. Acta713 (1982) 193–198.Google Scholar
  71. 71.
    Haq, R. U., Shrago, E., Christodoulides, L., and Ketterer B., Purification and characterization of fatty acid binding protein in mammalian lung. Exp. Lung Res.9 (1985) 43–55.Google Scholar
  72. 72.
    Haq, R. U., Tsao, F., and Shrago, E., Relation of lung fatty acid binding protein to the biosynthesis of pulmonary phosphatidic acid and phosphatidylcholine. J. Lipid Res.28 (1987) 216–220.Google Scholar
  73. 73.
    Hargis, P. S., Porter, T. E., Hargis, B. M., Silsby, J. L., Olson, C. D., El Halawani, M. E., and Dempsey, M. E., Sterol carrier protein. Association with prolactin and reproductive system in Large White turkeys. Poultry Sci.65 (Suppl. 1) (1986) 54.Google Scholar
  74. 74.
    Hauft, S. M., Sweetser, D. A., Rotwein, P. S., Lajara, R., Hoppe, P. C., Birkenmeier E. H., and Gordon, J. I., A transgenic mouse model that is useful for analysing cellular and geographical differentiation of the intestine during fetal development. J. biol. Chem.264 (1989) 8419–8429.Google Scholar
  75. 75.
    Hawkins, J. M., Jones, W. E., Bonner, F. W., and Gibson, G. G., The effect of peroxisome proliferators on microsomal, peroxisomal, and mitochondrial enzyme activities in the liver and kidney. Drug Metab. Rev.18 (1987) 441–515.Google Scholar
  76. 76.
    Henning, S. J., Postnatal development: coordination of feeding, digestion, and metabolism. Am. J. Physiol.241 (1981) G199–214.Google Scholar
  77. 77.
    Heuckeroth, R. O., Birkenmeier E. H., Levin, M. S., and Gordon, J. I., Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein. J. biol. Chem.262 (1987) 9709–9717.Google Scholar
  78. 78.
    Hresko, R. C., Bernier, M., Hoffman, R. D., Flores-Riveros, J. R., Liao, K., Laird, D. M., and Lane, M. D., Identification of phosphorylated 422 (aP2) protein as pp15, the 15-kilodalton target of the insulin receptor tyrosine kinase in 3T3-L1 adipocytes. Proc. natl Acad. Sci. USA85 (1988) 8835–8839.Google Scholar
  79. 79.
    Hsu, Y. M., Barry, J. M., and Wang, J. L., Growth control in cultured 3T3 fibroblasts. Neutralization and identification of a growthinhibitory factor by a monoclonal antibody. Proc. natl. Acad. Sci. USA81 (1984) 2107–2111.Google Scholar
  80. 80.
    Hsu, Y. M., and Wang, J. L., Growth control in cultured 3T3 fibroblasts. V. Purification of an Mr 13,000 polypeptide responsible for growth inhibitory activity. J. Cell Biol.102 (1986) 362–369.Google Scholar
  81. 81.
    Hunt, C. R., Ro, J. H.-S., Dobson, D., Min, H. Y., and Spiegelman, B. M., Adipocyte P2 gene, developmental expression and homology of 5′-flanking sequences among fat cell-specific genes. Proc. natl. Acad. Sci. USA83 (1986) 3786–3790.Google Scholar
  82. 82.
    Jagschies, G., Reers, M., Unterberg, C., and Spener, F., Bovine fatty acid binding proteins. Isolation and characterization of two fatty acid binding proteins that are distinct from corresponding hepatic proteins. Eur. J. Biochem.152 (1985) 537–545.Google Scholar
  83. 83.
    Johnson, R. S., Sheng, M., Greenberg, M. E., Kolodner, R. D., Papaioannou, V. E., and Spiegelman, B. M., Targeting of nonexpressed genes in embryonic stem cells via homologous recombination. Science245 (1989) 1234–1236.Google Scholar
  84. 84.
    Jones, T. A., Bergfors, T., Sedzik, J., and Unge, T., The three dimensional structure of P2 myelin protein. EMBO J.7 (1988) 1594–1604.Google Scholar
  85. 85.
    Jones, P. D., Carne, A., Bass, N. M., and Grigor, M. R., Isolation and characterization of fatty acid binding proteins from mammary tissue of lactating rats. Biochem. J.251 (1988) 919–925.Google Scholar
  86. 86.
    Kamisaka, K., Listowsky, L., Gatmaitan, Z., and Arias, I. M., Circular dichroism analysis of the secondary structure of Z-protein and its complexes with bilirubin and other organic anions. Biochim. biophys. Acta393 (1975) 24–30.Google Scholar
  87. 87.
    Kamasika, K., Maezawa, H., Inagaki, T., and Okano, K., A lowmolecular weight binding protein for organic anions (Z protein) from human hepatic cytosol. Hepatology1 (1981) 221–227.Google Scholar
  88. 88.
    Kaufman, M., Simoneau, J.-A., Veerkamp, J. H., and Pette, D., Electrostimulation-induced increases in fatty acid binding protein and myoglobin in rat fast-twitch muscle and comparison with tissue levels in heart. FEBS Lett.245 (1989) 181–184.Google Scholar
  89. 89.
    Kawashima, Y., Nakagawa, S., and Kozuka, H., Effects of some hypolipidemic drugs and phthalic acid esters on fatty acid binding protein. J. pharmac. Dyn.5 (1982) 771–779.Google Scholar
  90. 90.
    Kawashima, Y., Tachibana, Y., Nakagawa, S., and Kozuka, H., Species difference of liver fatty acid binding protein in rat, mouse and guinea pig. Lipids19 (1984) 481–487.Google Scholar
  91. 91.
    Ketterer, B., Ross-Mansell, P., and Whitehead, J. K., The isolation of carcinogen-binding protein from livers of rats given 4-dimethyl-aminoazobenzene. Biochem. J.103 (1967) 316–324.Google Scholar
  92. 92.
    Ketterer, B., Tipping, E., Hackney, J. F., and Beale, D., A lowmolecular weight protein from rat liver that resembles ligandin in its binding properties. Biochem. J.155 (1976) 511–521.Google Scholar
  93. 93.
    Kimura, H., Odani, S., Suzuki, J.-I., Arakawa, M., and Ono, T., Kidney fatty acid binding protein. Identification as α-2u globulin. FEBS Lett.246 (1989) 101–104.Google Scholar
  94. 94.
    Knudsen, J., Højrup, P., Hansen, H. S., Hansen, H. F., and Roepstorff, P., Acyl-CoA-binding protein in the rat. Biochem. J.262 (1989) 513–519.Google Scholar
  95. 95.
    Kraft, A. S., Anderson, W. B., Cooper H. C., and Sando, J. J., Decrease in cytosolic calcium/phospholipid dependent protein kinase activity following phorbol ester treatment of EL 4 thymoma cells. J. biol. Chem.257 (1982) 193–196.Google Scholar
  96. 96.
    Lalwani, N. D., Alvares, K., Reddy, M. K., Reddy, M. N., Parikh, I., and Reddy, J. K., Peroxisome proliferator-binding protein. Identification and partial characterization of nafenopin-, clofibric acid-, and ciprofibrate-binding proteins from rat liver. Proc. natl Acad. Sci. USA84 (1987) 5242–5246.Google Scholar
  97. 97.
    Lam, K. T., Borkan, S., Claffey, K. P., Schwartz, J. H., Chobanian, A. V., and Brecher, P., Properties and differential regulation of two fatty acid binding proteins in rat kidney. J. biol. Chem.263 (1988) 15762–15768.Google Scholar
  98. 98.
    Lees, M., and Brostoff, S. W., Proteins of myelin, in: Myelin, pp. 197–219. Ed. P. Morell. Plenum Press, New York 1984.Google Scholar
  99. 99.
    Lehmann, R., Widmaier, R., and Langen, P., Response of different mammary epithelial cell lines to a mammary derived growth inhibitor (MDGI). Biomed. biochim. Acta48 (1989) 143–151.Google Scholar
  100. 100.
    Levi, A. J., Gatmaitan, Z., and Arias, I. M., Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromphthalein, and other anions. J. clin. Invest.48 (1969) 2156–2167.Google Scholar
  101. 101.
    Levin, M. S., Pitt, A. J. A., Schwartz, A. L., Edwards, P. A., and Gordon, J. I., Developmental changes in the expression of genes involved in cholesterol biosynthesis and lipid transport in human and rat fetal and neonatal livers. Biochim. biophys. Acta1003 (1989) 293–300.Google Scholar
  102. 102.
    Li, E., Demmer, L. A., Sweetser, D. A., Ong, D. E., and Gordon, J. I., Rat cellular retinol-binding protein II. Use of a cloned cDNA to define its primary structure, tissue-specific expression, and developmental regulation. Proc. natl Acad. Sci. USA83 (1986) 5779–5783.Google Scholar
  103. 103.
    Lowe, J. B., Boguski, M. S., Sweetser, D. A., Elshourbagy, N. A., Taylor, J. M., and Gordon, J. I., Human liver fatty acid binding protein. Isolation of full length cDNA and comparative sequence analyses of orthologous and paralogous proteins. J. biol. Chem.260 (1985) 3414–3417.Google Scholar
  104. 104.
    Lowe, J. B., Sacchettini, J. C., Laposata, M., McQuillan, J. J., and Gordon, J. I., Expression of rat intestinal fatty acid-binding protein inEscherichia coli. J. biol. Chem.262 (1987) 5931–5937.Google Scholar
  105. 105.
    Lowe, J. B., Strauss, A. W., and Gordon, J. I., Expression of a mammalian fatty acid-binding protein inEscherichia coli. J. biol. Chem.259 (1984) 12696–12704.Google Scholar
  106. 106.
    Lunzer, M. A., Manning, J. M., and Ockner, R. K., Inhibition of rat liver acetyl coenzyme A carboxylase by long-chain acyl-CoA and fatty acid. J. biol. Chem.252 (1977) 5483–5487.Google Scholar
  107. 107.
    Malewiak, M.-I., Bass, N. M., Griglio, S., and Ockner, R. K., Influence of genetic obesity and of fat-feeding on hepatic fatty acid binding protein concentration and activity. Int. J. Obesity12 (1988) 543–546.Google Scholar
  108. 108.
    Malewiak, M.-I., Griglio, S., Kalopissis, A. D., and Le Liepvre, X., Oleate metabolism in isolated hepatocytes from lean and obese Zucker rats. Influence of high-fat diet and in vitro response to glucagon. Metabolism32 (1983) 661–668.Google Scholar
  109. 109.
    Matarese, V., and Bernlohr, D. A., Purification of murine adipocyte lipid-binding protein. J. biol. Chem.263 (1988) 14544–14551.Google Scholar
  110. 110.
    Matsushita, Y., Umeyama, H., and Moriguchi, I., Purification and properties of Z protein from rabbit and rat liver. Chem. pharm. Bull.25 (1977) 647–652.Google Scholar
  111. 111.
    McCormack, M., and Brecher, P., Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes. Biochem. J.244 (1987) 717–723.Google Scholar
  112. 112.
    McPhail, L. C., Clayton, C. C., and Snyderman, R., A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science224 (1984) 622–625.Google Scholar
  113. 113.
    Medina, D., and Morrison, D. G., Current ideas on selenium as a chemopreventive agent. Path. Immunopath. Res.7 (1988) 187–199.Google Scholar
  114. 114.
    Mikkelsen, J., Højrup, P., Nielsen, P. F., Roepstorff, P., and Knudsen, J., Amino acid sequence of acyl-CoA binding protein from cow liver. Biochem. J.245 (1987) 857–861.Google Scholar
  115. 115.
    Mikkelsen, J., and Knudsen, J., Acyl-CoA binding protein from cow. Biochem. J.248 (1987) 709–714.Google Scholar
  116. 116.
    Miller, W. C., Hickson, R. C., and Bass, N. M., Fatty acid binding proteins in the three types of rat skeletal muscle. Proc. Soc. exp. Biol. Med.189 (1988) 183–188.Google Scholar
  117. 117.
    Milton, M. N., Elcombe, C. R., Kass, G. E. N., and Gibson, G. G., Lack of evidence for a hepatic peroxisome proliferator receptor and an explanation for the binding of hypolidemic drugs to liver homogenates. Biochem. Pharmac.37 (1988) 793–798.Google Scholar
  118. 118.
    Mishkin, S., Stein, L., Gatmaitan, Z., and Arias, I. M., The binding of fatty acids to cytoplasmic proteins: Binding to Z-protein in liver and other tissues of the rat. Biochem. biophys. Res. Commun.47 (1972) 997–1003.Google Scholar
  119. 119.
    Mogensen, I. B., Schulenberg, H., Hansen, H. O., Spener, F., and Knudsen, J., A novel acyl-CoA binding protein from bovine liver. Biochem. J.241 (1987) 189–192.Google Scholar
  120. 120.
    Munir, K. M., Custer, R. P., and Sorof, S., Normal hepatocytes exhibiting histone H3 with antibody accessible sites that are cryptic in carcinogen-altered hepatocytes. Cancer Res.49 (1989) 424–432.Google Scholar
  121. 121.
    Murakami, K., and Routtenberg, A., Direct activation of purified protein kinase C by unsaturated fatty acids (oleate and arachidonate) in the absence of phospholipids and Ca2+. FEBS Lett.192 (1985) 189–193.Google Scholar
  122. 122.
    Narayanan, V., Barbosa, E., Reed, R., and Tennekoon, G., Characterization of a cloned cDNA encoding rabbit myelin P2 protein. J. biol. Chem.263 (1988) 9332–9337.Google Scholar
  123. 123.
    Neely, J. R., and Morgan, H. E., Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. A. Rev. Physiol.36 (1974) 413–459.Google Scholar
  124. 124.
    Nishizuka, Y., Studies and perspectives of protein kinase C. Science305 (1986) 305–312.Google Scholar
  125. 125.
    Nishizuka, Y., The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature308 (1984) 693–698.Google Scholar
  126. 126.
    Noy, N., Donnelly, T. M., Cooper, R. B., and Zakim, D., The physical-chemical basis for sex-related differences in uptake of fatty acids by the liver. Biochim. biophys. Acta1003 (1989) 125–130.Google Scholar
  127. 127.
    Noy, N., Donnelly, T. M., and Zakim, D., Physical-chemical model for the entry of water-insoluble compounds into cells. Studies of fatty acid uptake by the liver. Biochemistry25 (1986) 2013–2021.Google Scholar
  128. 128.
    Noy, N., and Zakim, D., Fatty acids bound to unilamellar vesicles as substrates for microsomal acyl-CoA ligase. Biochemistry24 (1985) 3521–3525.Google Scholar
  129. 129.
    Nunn, W. D., Colburn, R. W., and Black, P. N., Transport of longchain fatty acids inEscherichia coli. J. biol. Chem.261 (1986) 167–171.Google Scholar
  130. 130.
    Ockner, R. K., Lysenko, N., Manning, J. A., Monroe, S. E., and Burnett, D. A., Sex steroid modulation of fatty acid utilization and fatty acid binding protein concentration in rat liver. J. clin. Invest.65 (1980) 1013–1023.Google Scholar
  131. 131.
    Ockner, R. K., and Manning, J., Fatty acid-binding protein in small intestine. Identification, isolation, and evidence for its role in intracellular fatty acid transport. J. clion. Invest.54 (1974) 326–338.Google Scholar
  132. 132.
    Ockner, R. K., Manning, J. A., and Kane, J. P., Fatty acid binding protein. Isolation from rat liver, characterization, and immunochemical quantification. J. biol. Chem.257 (1982) 7872–7878.Google Scholar
  133. 133.
    Ockner, R. K., Manning, J. A., Poppenhausen, R. B., and Ho, W. K. L., A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science177 (1972) 56–58.Google Scholar
  134. 134.
    Offner, G. D., Troxler, R. F., and Brecher, P., Characterization of a fatty acid binding protein from rat heart. J. biol. Chem.261 (1986) 5584–5589.Google Scholar
  135. 135.
    Paulussen, R. J. A., Geelen, M. J. H., Beynen, A. C., and Veerkamp, J. H., Immunochemical quantitation of fatty-acid-binding proteins. I. Tissue and intracellular distribution, postnatal development and influence of physiological conditions on rat heart and liver fatty acid binding protein. Biochim. biophys. Acta1001 (1989) 201–209.Google Scholar
  136. 136.
    Paulussen, R. J. A., van der Logt, C. P., and Veerkamp, J. H., Characterization and binding properties of fatty acid binding proteins from human, pig and rat heart. Archs. Biochem. Biophys.264 (1988) 533–545.Google Scholar
  137. 137.
    Peeters, R. A., in T Groen, M. A. P. M., de Moel, M. P., van Moerkerk, H. T. B. and Veerkamp, J. H., The binding affinity of fatty acid-binding proteins from human, pig and rat liver for different fluorescent fatty acids and other ligands. Int. J. Biochem.21 (1989) 407–418.Google Scholar
  138. 138.
    Peeters, R. A., Veerkamp, J. H., and Demel, R. A., Are fatty acid-binding proteins involved in fatty acid transfer? Biochim. biophys. Acta1002 (1989) 8–13.Google Scholar
  139. 139.
    Rauscher, F. J., III, Sambucetti, L. C., Curran, T., Distel, R. J., and Spiegelman, B. M., Common DNA binding site forfos-protein complexes and transcription factor AP-1. Cell52 (1988) 471–480.Google Scholar
  140. 140.
    Raza, H., Pogubala, J. R., and Sorof, S., Specific high affinity binding of lipoxygenase metabolites of arachidonic acid by liver fatty acid binding protein. Biochem. biophys. Res. Commun.161 (1989) 448–455.Google Scholar
  141. 141.
    Reers, M., Elbracht, R., Rudel, H., and Spener, F., Rapid method for the characterization of unilamellar phospholipid vesicles. Application to studies on fatty acid donor and acceptor properties of membranes and fatty acid binding proteins. Chem. Phys. Lipids36 (1984) 15–28.Google Scholar
  142. 142.
    Renaud, G., Foliot, A., and Infante, R., Increased uptake of fatty acids by the isolated rat liver after raising the fatty acid binding protein concentration with clofibrate. Biochem. biophys. Res. Commun.80 (1978) 327–334.Google Scholar
  143. 143.
    Reyes, H., Levi, A. J., Gatmaitan, Z., and Arias, I. M., Studies of Y and Z, two hepatic cytoplasmic organic anion-binding proteins. Effect of drugs, chemicals, hormones, and cholestasis. J. clin. Invest.50 (1971) 2242–2252.Google Scholar
  144. 144.
    Rhoads, D. E., Ockner, R. K., Peterson, N. A., and Raghaputhy, E., Modulation of membrane transport by free fatty acids: inhibition of synaptosomal sodium-dependent amino acid uptake. Biochemistry22 (1983) 1965–1970.Google Scholar
  145. 145.
    Rozengurt, E., Early signals in the mitogenic response. Science234 (1986) 161–166.Google Scholar
  146. 146.
    Sacchettini, J. C., Gordon, J. I., and Banaszak, L. J., Refined apoprotein structure of rat intestinal fatty acid binding protein produced inEscherichia coli. Proc. natl Acad. Sci. USA86 (1989) 7736–7740.Google Scholar
  147. 147.
    Sacchettini, J. C., Gordon, J. I., and Banaszak, L. J., Crystal structure of rat intestinal fatty acid binding protein. Refinement and analysis of theEscherichia coli-derived protein with bound palmitate. J. molec. Biol.208 (1989) 327–339.Google Scholar
  148. 148.
    Sacchettini, J. C., Gordon, J. I., and Banaszak, L. J., The structure of crystallineEscherichia coli-derived rat intestinal fatty acid-binding protein at 2.5-Å resolution. J. biol. Chem.263 (1988) 5815–5819.Google Scholar
  149. 149.
    Said, B., and Schultz, H., Fatty acid binding protein from rat heart. The fatty acid binding proteins from rat heart and liver are different proteins. J. biol. Chem.259 (1984) 1155–1159.Google Scholar
  150. 150.
    Sarzani, R., Claffey, K. P., Chobanian, A. V., and Brecher, P., Hypertension induces tisue-specific gene suppression of a fatty acid binding protein in rat aorta. Proc. natl Acad. Sci. USA85 (1988) 7777–7781.Google Scholar
  151. 151.
    Schulenberg-Schell, H., Schafer, P., Keuper, H. J. K., Stanislawski, B., Hoffman, E., Ruterjans, H., and Spener, F., Interactions of fatty acids with neutral fatty acid-binding protein from bovine liver. Eur. J. Biochem.170 (1988) 565–574.Google Scholar
  152. 152.
    Schulz, H., Oxidation of fatty acids, in: Biochemistry of Lipids and Membranes, pp. 116–141. Eds D. E. Vance, and J. E. Vance. The Benjamin/Cummings Publ. Co. Inc., Menlo Park, CA 1985.Google Scholar
  153. 153.
    Schwieterman, W., Sorrentino, D., Potter, B. J., Rand, J., Kiang, C.-L., Stump, D., and Berk, P., Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut. Proc. natl Acad. Sci. USA85 (1988) 359–363.Google Scholar
  154. 154.
    Seifert, R., Schachtele, C., Rosenthal, W., and Schultz, G., Activation of protein kinase C by cis- and trans-fatty acids and its potentation by diacylglycerol. Biochem. biophys. Res. Commun.154 (1988) 20–26.Google Scholar
  155. 155.
    Sewell, J. E., Davis, S. K., and Hargis, P. S., Isolation characterization, and expression of fatty acid binding protein in liver ofGallus domesticus. comp. Biochem. Physiol. [B]92 (1989) 509–516.Google Scholar
  156. 156.
    Sheridan, M., Wilkinson, T. C. I., and Wilton, D. C., Studies on fatty acid binding proteins. Biochem. J.242 (1987) 919–922.Google Scholar
  157. 157.
    Shields, H. M., Bates, M. L., Bass, N. M., Best, C. J., Alpers, D. H., and Ockner, R. K., Light microscopic immuno-cytochemical localization of hepatic and intestinal types of fatty acid binding protein in rat small intestine. J. Lipid Res.27 (1986) 549–557.Google Scholar
  158. 158.
    Sorof, S., and Custer, R. P., Elevated expression and cell cycle deregulation of a mitosis-associated target polypeptide of a carcinogen in hyperplastic and malignant rat hepatocytes. Cancer Res.47 (1987) 210–220.Google Scholar
  159. 159.
    Sorrentino, D., Stump, D., Potter, B. J., Robinson, R. B., White, R., Kiang, C.-L., and Berk, P. D., Oleate uptake by cardiac myocytes is carrier mediated and involves a 40-kDa plasma membrane fatty acid binding protein similar to that in liver, adipose, tissue, and gut. J. clin. Invest.82 (1988) 928–935.Google Scholar
  160. 160.
    Sorrentino, D., Van Ness, K., and Berk, P. D., Hepatocellular22Na+ uptake: effect of oleate. Hepatology10 (1989) 592 (abstr.).Google Scholar
  161. 161.
    Spener, F., Borchers, T., and Mukherjea, M., On the role of fatty acid binding proteins in fatty acid transport and metabolism. FEBS Lett.244 (1989) 1–5.Google Scholar
  162. 162.
    Storch, J., Bass, N. M., and Kleinfeld, A. M., Studies of the fatty acid-binding site of rat liver fatty acid binding protein using fluorescent fatty acids. J. biol. Chem.264 (1989) 8708–8713.Google Scholar
  163. 163.
    Stremmel, W., Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein. J. clin. Invest.82 (1988) 2001–2010.Google Scholar
  164. 164.
    Stremmel, W., Diede, H. E., Schrader, M., Zimmerbeutel, B., Hopeler, H., Passarella, S., and Doonan, S., Further characterization of the membrane fatty acid binding protein (MFABP) by a monoclonal antibody to this protein. Hepatology10 (1989) 591 (abstr.)Google Scholar
  165. 165.
    Stremmel, W., Strohmeyer, G., and Berk, P., Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein. Proc. natl Acad. Sci. USA83 (1986) 3584–3588.Google Scholar
  166. 166.
    Stremmel, W., Strohmeyer, G., Borchard, F., Kochwa, S., and Berk, P., Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc. natl. Acad. Sci. USA82 (1985) 4–8.Google Scholar
  167. 167.
    Sundelin, J., Anundi, H., Tragardh, L., Erikkson, U., Lind, P., Hans, R., Peterson, P. A., and Rask, L., The primary structure of rat liver cellular retinol-binding protein. J. biol. Chem.260 (1985) 6488–6493.Google Scholar
  168. 168.
    Sundelin, J., Das, S. R., Erikkson, U., Rask, L., and Peterson, P. A., The primary structure of rat liver cellular retinoic acid-binding protein. J. biol. Chem.260 (1985) 6494–6499.Google Scholar
  169. 169.
    Sundelin, J., Erikkson, U., Melhus, H., Nilsson, M., Lundvall, J., Bavik, C. O., Hansson, E., Laurent, B., and Peterson, P. A., Cellular retinoid binding proteins. Chem. Phys. Lipids38 (1985) 175–185.Google Scholar
  170. 170.
    Suzuki, T., Hitomi, M., and Ono, T., Immunohistochemical distribution of hepatic fatty acid binding protein in rat and human alimentary canal. J. Histochem. Cytochem.36 (1988) 349–357.Google Scholar
  171. 171.
    Sweetser, D. A., Birkenmeier, E. H., Hoppe, P. C., McKeel, D. W., and Gordon, J. I., Mechanisms underlying generation of gradients in gene expression within the intestine. An analysis using transgenic mice containing fatty acid binding protein-human growth hormone fusion genes. Genes Dev.2 (1988) 1318–1322.Google Scholar
  172. 172.
    Sweetser, D. A., Birkenmeier, E. H., Klisak, I. J., Zollman, S., Sparkes, R. S., Mohandas, T., Lusis, A. J., and Gordon, J. I., The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkage relationships. J. biol. Chem.262 (1987) 16 060–16 071.Google Scholar
  173. 173.
    Sweetser, D. A., Hauft, S. M., Hoppe, P. C., Birkenmeier, E. H., and Gordon, J. I., Transgenic mice containing intestinal fatty acid binding protein-human growth hormone fusion genes exhibit correct regional and cell-specific expression of the reporter gene in their small intestine. Proc. natl Acad. Sci. USA85 (1988) 9611–9615.Google Scholar
  174. 174.
    Sweetser, D. A., Heuckeroth, R. O., and Gordon, J. I., The metabolic significance of mammalian fatty acid binding proteins. Abundant proteins in search of a function. A. Rev. Nutr.7 (1987) 337–359.Google Scholar
  175. 175.
    Takikawa, H., and Kaplowitz, N., Binding of bile acids, oleic acid, and organic anions by rat and human hepatic Z protein. Archs. Biochem. Biophys.251 (1986) 385–392.Google Scholar
  176. 176.
    Tipping, E., and Ketterer, B., The influence of soluble binding proteins on lipophile transport and metabolism in hepatocytes. Biochem. J.195 (1981) 441–452.Google Scholar
  177. 177.
    Unterberg, C., Heidl, G., von Bassewitz, D.-B., and Spener, F., Isolation and characterization of the fatty acid binding protein from human heart. J. Lipid Res.27 (1986) 1287–1293.Google Scholar
  178. 178.
    Uyemura, K., Yoshimura, K., Suzuki, M., and Kitamura, K., Lipid-binding activities of the P2 protein in peripheral nerve myelin. Neurochem. Res.9 (1984) 1509–1514.Google Scholar
  179. 179.
    Van der Vusse, G. J., Prinzen, F. W., van Bilsen, M., Engels, W., and Reneman, R. S., Accumulation of lipids and lipid-intermediates in the heart during ischemia. Basic Res. Cardiol.82 (Suppl. I) (1987) 157–167.Google Scholar
  180. 180.
    Verkest, V., McArthur, M., and Hamilton, S., Fatty acid activation of protein kinase C. Dependence on diacylglycerol. Biochem. biophys. Res. Commun.152 (1988) 825–829.Google Scholar
  181. 181.
    Vincent, S. H., Bass, N. M., Snider, J. M., and Muller-Eberhard, U., Are the rat liver cytosolic fatty acid-binding (L-FABP) and heme-binding (HBP) proteins identical? Biochem. Arch.3 (1987) 443–451.Google Scholar
  182. 182.
    Vincent, S. H., and Muller-Eberhard, U., A protein of the Z Class of liver cytosolic proteins in the rat that preferentially binds heme. J. biol. Chem.260 (1985) 14521–14528.Google Scholar
  183. 183.
    Vinores, S. A., Churey, J. J., Haller, J. M., Schnabel, S. J., Custer, R. P., and Scrof, S., Normal liver chromatin contains a firmly bound and larger protein related to the principal cytosolic target polypeptide of a hepatic carcinogen. Proc. natl. Acad. Sci. USA81 (1984) 2092–2096.Google Scholar
  184. 184.
    Walz, D. A., Wider, M. D., Snow, J. W., Dass, C., and Desiderio, D. M., The complete amino acid sequence of procine gastrotropin, an ileal protein which stimulates gastric acid and pepsinogen secretion. J. biol. Chem.263 (1988) 14189–14195.Google Scholar
  185. 185.
    Warner, M., and Niems, A. M., Studies on Z-fraction. I. Isolation and partial characterization of low molecular weight ligand-binding protein from rat hepatic cytosol. Can. J. Physiol. Pharmac.53 (1975) 493–500.Google Scholar
  186. 186.
    Warshaw, J. B., Cellular energy metabolism during fetal development. IV. Fatty acid activation, acyl transfer and fatty acid oxidation during development of the chick and rat. Dev. Biol.28 (1972) 537–544.Google Scholar
  187. 187.
    Watanabe, T., Lalwani, N. D., and Reddy, J. K., Specific changes in the protein composition of rat liver in response to the peroxisome proliferators ciprofibrate, Wy-14,643 and di-(2-ethylhexyl)phthalate. Biochem. J.227 (1985) 767–775.Google Scholar
  188. 188.
    Weisiger, R. A., Fitz, J. G., and Scharschmidt, B. F., Hepatic oleate uptake. Electrochemical driving forces in intact rat liver. J. clin. Invest.83 (1989) 411–420.Google Scholar
  189. 189.
    Wilkinson, T. C. I., and Wilton, D. C., Studies on fatty acid-binding proteins. The binding properties of rat liver fatty acid binding protein. Biochem. J.247 (1987) 485–488.Google Scholar
  190. 190.
    Wittels, B., and Bressler, R., Lipid metabolism in the newborn heart. J. clin. Invest.44 (1965) 1639–1646.Google Scholar
  191. 191.
    Yang, V. W., Christy, R. J., Cook, J. S., Kelly, T. J., and Lane, M. D., Mechanism of regulation of the p422 (aP2) gene by cAMP during preadipocyte differentiation. Proc. natl. Acad. Sci. USA86 (1989) 3629–3633.Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • R. M. Kaikaus
    • 1
  • N. M. Bass
    • 1
  • R. K. Ockner
    • 1
  1. 1.Department of Medicine and The Liver CenterUniversity of California at San FranciscoSan FranciscoUSA

Personalised recommendations