BIT Numerical Mathematics

, Volume 27, Issue 1, pp 44–48

A generalized, one-way, stackless quicksort

  • Lutz M. Wegner
Part I Computer Science

Abstract

This note generalizes the one-way, stackless quicksort of Huang and Knuth to work for any type of sort key. It thus proves that quicksort can run with minimal space inO(N logN) average time.

AMS 68.E.05

C.R. F.2.2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. R. Hoare,Quicksort, The Computer Journal, 5 (1962), 10–15.CrossRefGoogle Scholar
  2. 2.
    Donald E. Knuth,The Art of Computer Programming, Volume 3:Sorting and Searching, Readings, Mass.: Addison-Wesley, 1975.Google Scholar
  3. 3.
    D. Motzkin,A stable quicksort, Softw.Pract. Exper. 11, 6 (June 1981), 607–611.Google Scholar
  4. 4.
    L. M. Wegner,Sorting a linked list with equal keys, Inf. Processing Lett., 15, 5 (Dec. 1982), 205–208.CrossRefGoogle Scholar
  5. 5.
    L. M. Wegner,Quicksort for equal keys, IEEE TC, 34, 4 (April 1985), 362–367.Google Scholar
  6. 6.
    Huang Bing-Chao and Donald E. Knuth,A one-way, stackless quicksort algorithm, BIT, 26 (1986), 127–130.MathSciNetGoogle Scholar
  7. 7.
    J. Bentley,Programming pearls: How to sort, Comm. ACM, 27, 4 (April 1984), 287–291.Google Scholar
  8. 8.
    R. Sedgewick,Implementing quicksort programs, Comm. ACM, 21, 10 (Oct. 1978), 847–857 and 22, 6 (June 1979), 368.CrossRefGoogle Scholar
  9. 9.
    L. Trabb Pardo,Stable sorting and merging with optimal space and time bounds, SIAM J. Comput., 6, 2 (June 1977), 351–372.CrossRefGoogle Scholar
  10. 10.
    S. M. Merritt,An inverted taxonomy of sorting algorithms, Comm. ACM, 28, 1 (Jan. 1985), 96–99.CrossRefGoogle Scholar

Copyright information

© BIT Foundations 1987

Authors and Affiliations

  • Lutz M. Wegner
    • 1
  1. 1.IBM Heidelberg Scientific CenterHeidelbergGermany

Personalised recommendations