BIT Numerical Mathematics

, Volume 9, Issue 4, pp 351–361 | Cite as

New quadrature formulas for the numerical inversion of the Laplace transform

  • Robert Piessens
Article

Abstract

New quadrature formulas for the evaluation of the Bromwich integral, arising in the inversion of the Laplace transform are discussed. They are obtained by optimal addition of abscissas to Gaussian quadrature formulas. A table of abscissas and weights is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Ditkin and A. P. Prudnikov,Operational Calculus, Progress in Mathematics, pp. 1–74. R. V. Gamkrelidze, ed., Plenum Press, N.Y. 1968 (translated from Russian).Google Scholar
  2. 2.
    R. Bellman, R. Kalaba and J. Lockett,Numerical Inversion of the Laplace Transform, American Elsevier, N.Y. 1966.Google Scholar
  3. 3.
    C. Lanczos,Applied Analysis, Prentice-Hall, Englewood Cliffs, N.J. 1956.Google Scholar
  4. 4.
    R. Piessens,Numerical Inversion of the Laplace Transform, IEEE Trans. on Automatic Control, vol. AC-14, No 3, 1969.Google Scholar
  5. 5.
    W. Gautschi,On the Condition of a Matrix Arising in the Numerical Inversion of the Laplace Transform, Math. Comp., 23, 1969, pp. 109–118.Google Scholar
  6. 6.
    H. E. Salzer,Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms, MTAC, 9, 1955, pp. 164–177.Google Scholar
  7. 7.
    L. A. Schmittroth,Numerical Inversion of Laplace Transforms, Comm. ACM, 3, 1960, pp. 171–173.CrossRefGoogle Scholar
  8. 8.
    H. Dubner and J. Abate,Numerical Inversion of Laplace Transforms and the finite Fourier cosine Transform, J. ACM, 15, 1968, pp. 115–123.CrossRefGoogle Scholar
  9. 9.
    W. T. Weeks,Numerical Inversion of Laplace Transforms using Laguerre Functions, J. ACM, 13, 1966, pp. 419–426.CrossRefGoogle Scholar
  10. 10.
    H. E. Salzer,Additional formulas and tables for orthogonal polynomials originating from inversion integrals, J. Math. Phys., 40, 1961, pp. 72–86.Google Scholar
  11. 11.
    A. Stroud and D. Secrest,Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, N.J., 1966.Google Scholar
  12. 12.
    V. I. Krylov and N. S. Skoblya,On the numerical inversion of the Laplace transform, Inzh.-Fiz. Zh., 4, 1961, pp. 85–101 (Russian).Google Scholar
  13. 13.
    N. S. Skoblya,Tables for the numerical inversion of the Laplace transforms, Minsk: Izdat. Akad. Nauk BSSR, 1964 (Russian).Google Scholar
  14. 14.
    R. Piessens,Gaussian quadrature formulas for the numerical integration of the Bromwich integral and the inversion of the Laplace transform, Inst. Applied Math., University of Louvain, 1969.Google Scholar

Copyright information

© BIT Foundations 1969

Authors and Affiliations

  • Robert Piessens
    • 1
  1. 1.Department of Applied MathematicsUniversity of LouvainHeverleeBelgium

Personalised recommendations