Advertisement

BIT Numerical Mathematics

, Volume 9, Issue 4, pp 301–314 | Cite as

Weight diagrams for lie group representations: A computer implementation of Freudenthal's algorithm in ALGOL and FORTRAN

  • Vishnu K. Agrawala
  • Johan G. Belinfante
Article

Abstract

Implementations in FORTRAN and ALGOL of the Dynkin and Freudenthal algorithms for computing weight systems and for determining the multiplicities of the weights for irreducible representations of simple Lie algebras are described. Reasonable computing times are found for algebras of rank less than or equal to 8 and for representations of dimension less than 1000.

Keywords

Computing Time Computational Mathematic Group Representation Irreducible Representation Weight System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    J.-P. Antoine,Irreducible Representations of the SU(3) Group, Ann. Soc. Sci. Bruxelles 77 (3), 150–162 (1963).Google Scholar
  2. 2.
    J.-P. Antoine and D. Speiser,Characters of Irreducible Representations of the Simple Groups. I. General Theory, J. Math. Phys. 5, 1226–1234 (1964).CrossRefGoogle Scholar
  3. 3.
    J.-P. Antoine and D. Speiser,Characters of Irreducible Representations of the Simple Groups. II. Application to Classical Groups, J. Math. Phys. 5, 1560–72 (1964).CrossRefGoogle Scholar
  4. 4.
    R. E. Behrends, J. Dreitlein, C. Fronsdal and B. W. Lee,Simple Groups and Strong Interaction Symmetries, Revs. Mod. Phys. 34, 1–40 (1962).CrossRefGoogle Scholar
  5. 5.
    J. G. Belinfante and B. Kolman,An Introduction to Lie Groups and Lie Algebras, with Application. Part III. Computational Methods, 1969. (to be published).Google Scholar
  6. 6.
    J. G. Belinfante, B. Kolman and H. A. Smith,An Introduction to Lie Groups and Lie Algebras, with Applications, S.I.A.M. Review 8, 11–46 (1966).Google Scholar
  7. 7.
    J. G. Belinfante, B. Kolman and H. A. Smith,An Introduction to Lie Groups and Lie Algebras, with Applications. II. The Basic Methods and Results of Representation Theory, S.I.A.M. Review 10, 160–195 (1968).Google Scholar
  8. 8.
    P. Cartier,On H. Weyl's Character Formula, Bull. AMS 67, 228–230 (1961).Google Scholar
  9. 9.
    J. J. DeSwart,The Octet Model and its Clebsch-Gordan Coefficients, Revs. Mod. Phys. 37, 326 (1965).CrossRefGoogle Scholar
  10. 10.
    E. B. Dynkin,Semisimple Subalgebras of Semisimple Lie Algebras, AMS. Transl. Ser. 2, vol. 6, pp. 111–244 (1957).Google Scholar
  11. 11.
    E. B. Dynkin,The Maximal Subgroups of the Classical Groups, AMS Transl. Ser. 2, vol. 6. 245–378 (1957). [Supplement:Survey of the Basic Concepts and Facts in the Theory of Linear Representations of Semisimple Lie Algebras].Google Scholar
  12. 12.
    E. B. Dynkin,The Structure of Semisimple Algebras, AMS Transl. Ser. I. 9, 328–469 (1962).Google Scholar
  13. 13.
    H. Freudenthal,On the Calculation of the Characters of Semisimple Lie Groups. I [German]. Proc. Kon. Ned. Akad. Wet. A 57, 369–376 (1954).Google Scholar
  14. 14.
    H. Freudenthal,On the Calculation of the Characters of Semisimple Lie Groups. II. [German]. Proc. Kon. Ned. Akad. Wet. A 57, 487–491 (1954).Google Scholar
  15. 15.
    H. Freudenthal,On the Calculation of the Characters of Semisimple Lie Groups. III. [German]. Proc. Kon. Ned. Akad. Wet. A 59, 511–514 (1956).Google Scholar
  16. 16.
    M. Gourdin,Unitary Symmetries and Their Application to High Energy Physics, N. Holland Publ. Co. (1967).Google Scholar
  17. 17.
    B. Gruber and H. J. Weber,On the Construction of Weight Diagrams for SO(5),Sp(4)and G 2, Proc. Roy. Irish Acad. 66A, 31–40 (1968).Google Scholar
  18. 18.
    B. Gruber and F. Zaccaria,Clebsch-Gordan Series for the Classical Rank-Two Groups and SU(4), Nuo. Cim. Suppl. 5, 914–936 (1967).Google Scholar
  19. 19.
    N. Jacobson,Lie Algebras, Interscience, New York (1962).Google Scholar
  20. 20.
    M. Konuma, K. Shima and M. Wada,Simple Lie Algebras of Rank 3 and Symmetries of Elementary Particles in the Strong Interactions, Prog. Theoret. Phys. Suppl. 28, 1–128 (1963).Google Scholar
  21. 21.
    B. Kostant,A Formula for the Multiplicity of a Weight, Proc. Natl. Acad. Sci. 44, 588–589 (1958).Google Scholar
  22. 22.
    B. Kostant,A Formula for the Multiplicity of a Weight, Trans. Ams. 93, 53–73 (1959).Google Scholar
  23. 23.
    G. Loupias, M. Sirugue and J. C. Tortin,On Simple Lie Groups of Rank 3, Nuo. Cim. 38, 1303–1325 (1965).Google Scholar
  24. 24.
    A. J. Macfarlane, L. O'Raifeartaigh, and P. S. Rao,Relationship of the Internal and External Multiplicity Structure of Compact Simple Lie Groups, J. Math. Phys. 8, 536–546 (1967).CrossRefGoogle Scholar
  25. 25.
    J. McConnell,Multiplicities in Weight Diagrams, Proc. Roy. Irish Acad. A65, 1–12 (1966).Google Scholar
  26. 26.
    J. McConnell,Properties of the Exceptional G 2 Lie Group, Proc. Roy. Irish Acad. 66A, 12–92 (1968).Google Scholar
  27. 27.
    Y. Ne'eman,The Symmetry Approach to Particle Physics, [reprinted in Gell-Mann and Ne'eman, 1964, Eightfold Way, pp. 302–317], Proc. Intern. Conf. Nucl. Structure, 172–187, (1963).Google Scholar
  28. 28.
    D. Radhakrishnan and T. S. Santhanam,Internal Multiplicity Structure and Clebsch-Gordan Series for the Exceptional Group G(2), J. Math. Phys. 8, 2206–9 (1967).CrossRefGoogle Scholar
  29. 29.
    D. Speiser,Fundamental Representations of Lie Groups, Helv. Phys. Acta 38, 73–97 (1965).Google Scholar
  30. 30.
    D. R. Speiser and J. Tarski,Possible Schemes for Global Symmetry, J. Math. Phys. 4, 588–612 (1963).CrossRefGoogle Scholar
  31. 31.
    T. A. Springer,Weyl's Character Formula for Algebraic Groups, Inventiones Math. 5, 85–105 (1968).CrossRefGoogle Scholar
  32. 32.
    N. Straumann,On the Clebsch-Gordan Series of Semisimple Lie Algebras, Helv. Phys. Acta 38, 56–64 (1965).Google Scholar
  33. 33.
    N. Straumann,Branching Rules and Clebsch-Gordan Series of Semi-Simple Lie Algebras, Helv. Phys. Acta 38, 481–498 (1965).Google Scholar
  34. 34.
    J. Tarski,Partition Function for Certain Simple Lie Algebras, J. Math. Phys. 3, 569–574 (1963).CrossRefGoogle Scholar
  35. 35.
    H. Weyl,Theory of Representations of Continuous Semi-Simple Groups by Linear Transformations. I., Math. Zeit. 23, 271–309 (1925).CrossRefGoogle Scholar
  36. 36.
    H. Weyl,Theory of Representations of Continuous Semi-Simple Groups by Linear Transformations. II., Math. Zeit. 24, 328–376 (1926).CrossRefGoogle Scholar
  37. 37.
    H. Weyl,Theory of Representations of Continuous Semi-Simple Groups by Linear Transformations. III., Math. Zeit. 24, 377–395 (1926).CrossRefGoogle Scholar
  38. 38.
    H. Weyl,Theory of Representations of Continuous Semi-Simple Groups by Linear Transformations. IV., Math. Zeit. 24, 789–791 (1926).CrossRefGoogle Scholar
  39. 39.
    E. P. Wigner,On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei, Phys. Rev. 51, 106–119 (1937).CrossRefGoogle Scholar
  40. 40.
    A. U. Klimyk,Multiplicities of Weights of Representations and Multiplicities of Representations of Semisimple Lie Algebras, Soviet Math. Doklady 8, 1531–1534 (1967).Google Scholar

Copyright information

© BIT Foundations 1969

Authors and Affiliations

  • Vishnu K. Agrawala
    • 1
    • 2
  • Johan G. Belinfante
    • 1
    • 2
  1. 1.Physical Science DepartmentPoint Park CollegePittsburgh
  2. 2.Mathematics and Physics DepartmentsCarnegie-Mellon UniversityPittsburgh

Personalised recommendations