Basic Research in Cardiology

, Volume 79, Issue 1, pp 49–58 | Cite as

Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart

  • E. M. Nuutinen
Original Contributions


Surface fluorometric measurements and indicator metabolite determinations in the isolated perfused rat heart showed that the NADH+NADPH fluorescence of the intact tissue originates largely from the mitochondria. The redox potential of the lactate dehydrogenase system calculated from the endogenous lactate/pyruvate ratios was closely similar to that of the glycerol-3-phosphate dehydrogenase system calculated from the concentrations of glycerol-3-phosphate and dihydroxyacetone phosphate in the tissue. Thus, in contrast to the liver, the cytosolic redox state of the NADH/NAD+ system in isolated perfused heart oxidizing external glucose or fatty acid is not amenable to optical monitoring, but can be assessed from the state of the lactate dehydrogenase or glycerol-3-phosphate, dehydrogenase systems.

Key words

organ fluorometry pyridine nucleotide fluorescence redox state cytosolic redox indicator reactions liver myocardium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bücher T, Klingenberg M (1958) Wege des Wasserstoffs in der lebendigen Organisation. Angew Chem 70:552–570Google Scholar
  2. 2.
    Hohorst HJ, Kreutz FH, Bücher T (1959) Über Metabolitgehalte und Metabolit-Konzentrationen in der Leber der Ratte. Biochem Z 332:18–46PubMedGoogle Scholar
  3. 3.
    Bücher T, sies H (1976) Mitochondrial and cytosolic redox states in perfused rat liver: methods and problems in metabolic compartmentation. In: Use of isolated liver cells and kidney tubules in metabolic studies (Tager JM, Söling HD, Williamson JR, eds) pp 41–64. Elsevier North-Holland, Amsterdam New YorkGoogle Scholar
  4. 4.
    Bücher T, Brauser B, Conza A, Klein F, Langguth O, Sies H (1972) State of oxidation-reduction and state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular lactate/pyruvate in hemoglobin free perfused rat liver. Eur J Biochem 27:301–317PubMedGoogle Scholar
  5. 5.
    Nuutinen EM, Hiltunen JK, Hassinen IE (1981) The glutamate dehydrogenase system and the redox state of mitochondrial free nicotinamide adenine nucleotide in myocardium. FEBS Lett 128:356–360PubMedGoogle Scholar
  6. 6.
    Williamson JR (1966) Glycolytic control mechanisms, II. Kinetics of intermediate changes during the aerobic-anoxic transition in perfused rat heart. J Biol Chem 241:5026–5036PubMedGoogle Scholar
  7. 7.
    Lai F, Scheuer J (1975) Early changes in myocardial hypoxia: Relations between mechanical function, pH and intracellular compartmental metabolites. J Mol Cell Cardiol 7:289–303PubMedGoogle Scholar
  8. 8.
    Chapman JB (1972) Fluorometric studies of oxidative metabolism in isolated papillary muscle of the rabbit. J Gen Physiol 59:135–154PubMedGoogle Scholar
  9. 9.
    Peuhkurinen KJ, Hiltunen JK, Hassinen IE (1983) Metabolic compartmentation of pyruvate in the isolated perfused rat heart. Biochem J 210:193–198PubMedGoogle Scholar
  10. 10.
    Langendorff O (1895) Untersuchungen am überlebenden Säugeticrherzen. Pflügers Arch ges Physiol 61:291–332Google Scholar
  11. 11.
    Krebs HA, Henseleit K (1932) Untersuchungen über die Harnstoffbildung im Tierkörper. Hoppe-Seyler's Z Physiol Chem 210:33–36Google Scholar
  12. 12.
    Schimassek H (1962) Perfusion of isolated rat liver with a semi-synthetic medium and control of liver function. Life Sci 11:629–634PubMedGoogle Scholar
  13. 13.
    Hassinen IE, Ylikahri RH, Kähönen MT (1972) Effect of fructose on cellular respiration in perfused rat liver. Acta Med Scand Suppl 542:105–110Google Scholar
  14. 14.
    Hassinen IE, Jämsä T (1982) A reflectance spectrophotometer-surface fluorometer suitable for monitoring changes in hemoprotein spectra and fluorescence of flavins and nicotinamide nucleotides in intact tissues. Anal Biochem 120:365–372PubMedGoogle Scholar
  15. 15.
    Wollenberger A, Ristau O, Schoffa G (1960) Eine einfache Technik der extrem schnellen Abkühlung großer Gewebsstücke. Pflügers Arch ges Physiol 270:399–412Google Scholar
  16. 16.
    Williamson JR, Corkey B (1969) Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods. In: Methods in Enzymology (Colowick SP, Kaplan NO, eds) vol 13, pp 439–513. Academic Press New YorkGoogle Scholar
  17. 17.
    Hohorst HJ (1963) L-(+)-Lactate. Determination with lactic dehydrogenase and DPN. In: Methods of Enzymatic Analysis (Bergmeyer HU, ed), pp 266–270. Academic Press, New YorkGoogle Scholar
  18. 18.
    Bücher T, Czok R, Lamprecht W, Latzko E (1963) Pyruvate. In: Methods of Enzymatic Analysis (Bergmeyer HU, ed) pp 253–259. Academic Press, New YorkGoogle Scholar
  19. 19.
    Narins RG, Passonneau JV (1970) α-Ketoglutarat; Fluorometrische Bestimmung. In: Methoder der Enzymatischen Analyse (Bergmeyer HU, ed) vol 2, pp 1540–1543. Verlag Chemie, WeinheimGoogle Scholar
  20. 20.
    Bernt E, Bergmeyer HU (1970) L-Glutamat, Bestimmung mit Glutamat-dehydrogenase und NAD. In: Methoden der Enzymatischen Analyse (Bergmeyer HU, ed) vol 2 pp 1659–1663. Verlag Chemie, WeinheimGoogle Scholar
  21. 21.
    Kun E, Kearney EB (1970) Ammoniak. In: Methoden der Enzymatischen Analyse (Bergmeyer HU, ed) vol 2, pp 1749–1752. Verlag Chemie, WeinheimGoogle Scholar
  22. 22.
    Hohorst HJ (1970) L-(−)-Glycerin-3-phosphat. In: Methoden der Enzymatischen Analyse (Bergmeyer HU, ed) vol 2, pp 1379–1383. Verlag Chemie, WeinheimGoogle Scholar
  23. 23.
    Bücher T, Hohorst HJ (1970) D-Fructose-1,6-diphosphat, Dihydroxyacetonphosphat und D. Glycerinaldehyd-3-phosphat. In: Methoden der Enzymatischen Analyse (Bergmeyer HU, ed) vol 2, pp 1282–1288. Verlag Chemie, WeinheimGoogle Scholar
  24. 24.
    Dennis SC, Padma A, DeBuysere MS, Olson MS (1979) Studies on the regulation of pyruvalt dehydrogenase in the perfused rat heart. J Biol Chem 254:1252–1258PubMedGoogle Scholar
  25. 25.
    Olson MS, Dennis SC, DeBuysere MS, Padma A (1978) The regulation of pyruvate dehydrogenast in the isolated perfused rat heart. J Biol Chem 253:7369–7375PubMedGoogle Scholar
  26. 26.
    Scholz R, Olson MS, Schwab AJ, Schwabe U, Noell C, Braun W (1978) The effect of fatty acids of the regulation of pyruvate dehydrogenase in perfused rat liver. Eur J Biochem 86:519–530PubMedGoogle Scholar
  27. 27.
    Zwiebel FM, Schwabe U, Olson MS, Scholz R (1982) Role of pyruvate transporter in the regulation of the pyruvate dehydrogenase multienzyme complex in perfused rat liver. Biochemistry 21:346–353PubMedGoogle Scholar
  28. 28.
    Hiltunen JK, Hassinen IE (1976) Energy-linked regulation of glucose and pyruvate oxidatin in isolated perfused rat heart. Role of pyruvate dehydrogenase. Biochim Biophys Acta 440:377–398PubMedGoogle Scholar
  29. 29.
    Peuhkurinen KJ, Nuutinen EM, Pietiläinen EP, Hiltunen JK, Hassinen IE (1982) Role of pyruvate carboxylation in the energy-linked regulation of pool sizes of tricarboxylic, acid-cycle intermediates in the myocardium. Biochem J 208:577–581PubMedGoogle Scholar
  30. 30.
    Garland PB, Newsholme EA, Randle PJ (1964) Regulation of glucose uptake by muscle; 9. Effects of fatty acids and ketone bodies, and of alloxan-diabetes and starvation, on pyruvate metabolism and on lactate/pyruvate and L-Glycerol 3-phosphate/dihydroxyacetone phosphate concentration ratios in rat heart and rat diaphgram muscles. Biochem J 93:665–678PubMedGoogle Scholar
  31. 31.
    Opie LH, Owen P (1975) Effects of increased mechanical work by isolated perfused rat hean during production or uptake of ketone bodies; Assessment of mitochondrial oxidized to reduced free nicotinamide-adenine dinucleotide ratios and oxaloacetate concentrations. Biochem 148:403–415PubMedGoogle Scholar
  32. 32.
    Berry MN (1980) The function of energy-dependent redox reactions in cell metabolism. FEBS Let 117:K106-K120Google Scholar
  33. 33.
    Kauppinen RA, Hiltunen JK, Hassinen IE (1982) Compartmentation of citrate in relation to the regulation of glycolysis and the mitochondrial transmembrane proton electrochemical potential gradient in isolated perfused rat heart. Biochem Biophys Acta 681:286–291PubMedGoogle Scholar
  34. 34.
    LaNoue KF, Schoolwerth AC (1979) Metabolite transport in mitochondria. Ann Rev Biochem 48:871–922PubMedGoogle Scholar
  35. 35.
    Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103:514–527PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1984

Authors and Affiliations

  • E. M. Nuutinen
    • 1
  1. 1.Department of Medical BiochemistryUniversity of OuluOuluFinland

Personalised recommendations