Experientia

, Volume 46, Issue 8, pp 834–840 | Cite as

Heavy metal accumulation by bacteria and other microorganisms

  • G. M. Gadd
Reviews

Summary

Bacteria, and other microorganisms, exhibit a number of metabolism-dependent and-independent processes or the uptake and accumulation of heavy metals and radionuclides. The removal of such harmful substances from effluents and waste waters by microbe-based technologies may provide an alternative or additional means of metal/radionuclide recovery for economic reasons and/or environmental protection. Both living and dead cells as well as products derived from or produced by microorganisms can be effective metal accumulators and there is evidence that some biomass-based clean-up processes are economically viable. However, many aspects of metal-microbe interactions remain unexploited in biotechnology and further development and application is necessary, particularly to the problem of radionuclide release into the environment.

Key words

Heavy metals radionuclides microorganisms bacteria algae fungi yeasts uptake accumulation biosorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiking, H., Stijnman, A., Van Garderen, C., van Heerkhuizen, H., and Van't Riet, J., Inorganic phosphate accumulation and cadmium detoxification inKlebsiella aerogenes NCTC 418 growing in continuous culture. Appl. envir. Microbiol.47 (1984) 374–377.Google Scholar
  2. 2.
    Belliveau, B. H., Starodub, M. E., Cotter, C., and Trevors, J. T., Metal resistance and accumulation in bacteria. Biotechnol. Adv.5 (1987) 101–127.CrossRefPubMedGoogle Scholar
  3. 3.
    Beveridge, T. J., and Fyfe, W. S., Metal fixation by bacterial cell walls. Can. J. Earth Sci.22 (1985) 1893–1898.Google Scholar
  4. 4.
    Bianchi, M. E., Carbone, M. L., and Lucchini, G., Mn2+ and Mg2+ uptake in Mn-sensitive and Mn-resistant yeast strains. Plant. Sci. Lett.22 (1981) 345–352.CrossRefGoogle Scholar
  5. 5.
    Borst-Pauwels, G. W. F. H., Ion transport in yeast. Biochim. biophys. Acta650 (1981) 88–127.PubMedGoogle Scholar
  6. 6.
    Brierley, J. A., and Brierley, C. L., Biological accumulation of some heavy metals—biotechnological applications, in: Biomineralization and Biological Metal Accumulation, pp. 499–509. Reidel Publishing Company, Dordrecht 1983.Google Scholar
  7. 7.
    Brierley, C. L., Kelly, D. P., Seal, K. J., and Best, D. J., Materials and biotechnology, in: Biotechnology, pp. 163–212. Blackwell Scientific Publications, Oxford 1985.Google Scholar
  8. 8.
    Brierley, J. A., Goyak, G. M., and Brierley, C. L., Considerations for commercial use of natural products for metals recovery, in: Immobilisation of Ions by Bio-sorption, pp. 105–117. Ellis Horwood, Chichester 1986.Google Scholar
  9. 9.
    Butt, T. R., and Ecker, D. J., Yeast metallothionein and applications in biotechnology. Microbiol. Rev.51 (1987) 351–364.PubMedGoogle Scholar
  10. 10.
    Fisher, N. S., Accumulation of metals by marine picoplankton. Mar. Biol.87 (1985) 137–142.CrossRefGoogle Scholar
  11. 11.
    Fisher, N. S., Burns, K. A., Cherry, R. D., and Heyraud, M., Accumulation and cellular distribution of241Am,210Po and210Pb in two marine algae. Mar. Ecol.11 (1983) 233–237.Google Scholar
  12. 12.
    Friis, N., and Myers-Keith, P., Biosorption of uranium and lead byStreptomyces longwoodensis. Biotechnol. Bioeng.28 (1986) 21–28.CrossRefGoogle Scholar
  13. 13.
    Gadd, G. M., Fungal responses towards heavy metals, in: Microbes in Extreme Environments, pp. 83–110. Academic Press, London 1986.Google Scholar
  14. 14.
    Gadd, G. M., The uptake of heavy metals by fungi and yeasts: the chemistry and physiology of the process and applications for biotechnology, in: Immobilisation of Ions by Biosorption, pp. 135–147. Ellis Horwood, Chichester 1986.Google Scholar
  15. 15.
    Gadd, G. M., Accumulation of metals by microorganisms and algae, in: Biotechnology—A Comprehensive Treatise, vol. 6b, pp. 401–433. CVH Verlagsgesellschaft, Weinheim 1988.Google Scholar
  16. 16.
    Gadd, G. M., and Griffiths, A. J., Microorganisms and heavy metal toxicity. Microb. Ecol.4 (1978) 303–317.CrossRefGoogle Scholar
  17. 17.
    Gadd, G. M., and de Rome, L., Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol.29 (1988) 610–617.CrossRefGoogle Scholar
  18. 18.
    Gadd, G. M., and White, C., Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts, in: Metal-Microbe Interactions, pp. 19–38. IRL Press, Oxford 1989.Google Scholar
  19. 19.
    Greene, B., Hosea, M., McPherson, R., Henzl, M., Alexander, M. D., and Darnall, D. W., Interaction of gold (I) and gold (III) complexes with algal biomass. Envir. Sci. Technol.20 (1986) 627–632.CrossRefGoogle Scholar
  20. 20.
    Horikoshi, T., Nakajima, A., and Sakaguchi, T., Uptake of uranium byChlorella vulgaris. Agric. biol. Chem.43 (1979) 617–623.Google Scholar
  21. 21.
    Hutchins, S. R., Davidson, M. S., Brierley, J. A., and Brierley, C. L., Microorganisms in reclamation of metals. A. Rev. Microbiol.40 (1986) 311–336.CrossRefGoogle Scholar
  22. 22.
    Kelly, D. P., Norris, P. R., and Brierley, C. L., Microbiological methods for the extraction and recovery of metals, in: Microbial Technology: Current State, Future Prospects, pp. 263–308. Cambridge University Press, Cambridge 1979.Google Scholar
  23. 23.
    Khummongkol, D., Canterford, G. A., and Fryer, C., Accumulation of heavy metals in unicellular algae. Biotechnol. Bioeng.24 (1982) 2643–2660.CrossRefGoogle Scholar
  24. 24.
    Lester, J. N., Sterritt, R. M., Rudd, T., and Brown, M. J., Assessment of the role of bacterial extracellular polymers in controlling metal removal in biological waste water treatment, in: Microbiological Methods for Environmental Biotechnology, pp. 197–217. Academic Press, London 1984.Google Scholar
  25. 25.
    Macaskie, L. E., and Dean, A. C. R., Use of immobilised biofilm ofCitrobacter sp. for the removal of uranium and lead from aqueous flows. Enzyme Microb. Technol.9 (1987) 2–4.CrossRefGoogle Scholar
  26. 26.
    Macaskie, L. F., Dean, A. C. R., Cheetham, A. K., Jakeman, R. J. B., and Skarnulis, J., Cadmium accumulation by aCitrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J. gen. Microbiol.133 (1987) 539–544.Google Scholar
  27. 27.
    Macaskie, L. E., Wates, J. M., and Dean, A. C. R., Cadmium accumulation by aCitrobacter sp. immobilized on gel and solid supports: applicability to the treatment of liquid wastes containing heavy metal cations. Biotechnol. Bioeng.30 (1987) 66–73.CrossRefGoogle Scholar
  28. 28.
    Nakajima, A., and Sakaguchi, T., Selective accumulation of heavy metals by microorganisms. Appl. Microbiol. Biotechnol.24 (1986) 59–64.Google Scholar
  29. 29.
    Nakajima, A., Horikoshi, T., and Sakaguchi, T., Ion effects on the uptake of uranium byChlorella vulgaris. Agric. biol. Chem.43 (1979) 625–629.Google Scholar
  30. 30.
    Sakaguchi, T., and Nakajima, A., Recovery of uranium by chitin phosphate and chitosan phosphate, in: Chitin and Chitosan, pp. 177–182. Japanese Society of Chitin and Chitosan, Tottori, Japan 1982.Google Scholar
  31. 31.
    Shumate, S. E., and Strandberg, G. W., Accumulation of metals by microbial cells, in: Comprehensive Biotechnology, vol. 4, pp. 235–247. Pergamon Press, New York 1985.Google Scholar
  32. 32.
    Strandberg, G. W., Shumate, S. E., and Parrott, J. R., Microbial cells as biosorbents for heavy metals: accumulation of uranium bySaccharomyces cerevisiae andPseudomonas aeruginosa. Appl. envir. Microbiol.41 (1981) 237–245.Google Scholar
  33. 33.
    Tobin, J. M., Cooper, D. G., and Neufeld, R. J., Uptake of metal ions byRhizopus arrhizus biomass. Appl. envir. Microbiol.47 (1984) 821–824.Google Scholar
  34. 34.
    Trevors, J. T., Stratton, G. W., and Gadd, G. M., Cadmium transport, resistance and toxicity in bacteria, algae and fungi. Can. J. Microbiol.32 (1986) 447–464.PubMedGoogle Scholar
  35. 35.
    Tsezos, M., Recovery of uranium from biological adsorbents-desorption equilibrium. Biotechnol. Bioeng.26 (1984) 973–981.CrossRefGoogle Scholar
  36. 36.
    Tsezos, M., Absorption by microbial biomass as a process for removal of ions from process or waste solutions, in: Immobilization of Ions by Bio-sorption, pp. 201–218. Ellis Horwood, Chichester 1986.Google Scholar
  37. 37.
    Tsezos, M., and Volesky, B., Biosorption of uranium and throrium. Biotechnol. Bioeng.22 (1981) 583–604.CrossRefGoogle Scholar
  38. 38.
    Tsezos, M., and Volesky, B., The mechanism of uranium biosorption byRhizopus arrhizus. Biotechnol. Bioeng.24 (1982) 385–401.CrossRefGoogle Scholar
  39. 39.
    Wainwright, M., and Grayston, S. J., Accumulation and oxidation of metal sulphides, by fungi, in: Metal-Microbe Interactions, pp. 119–130. IRL Press, Oxford 1989.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1990

Authors and Affiliations

  • G. M. Gadd
    • 1
  1. 1.Department of Biological SciencesUniversity of DundeeDundeeUK

Personalised recommendations