BIT Numerical Mathematics

, Volume 25, Issue 1, pp 1–23 | Cite as

Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey

  • Stefan Arnborg
Part I Computer Science Invited Paper


Computational Mathematic Efficient Algorithm Combinatorial Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Aho, J. E. Hopcroft and J. D. Ullman,Design and Analysis of Computer Algorithms, Reading, Mass. Addison-Wesley, 1974.Google Scholar
  2. 2.
    S. Arnborg,Reduced state enumeration — another algorithm for reliability evaluation, IEEE Trans. Reliability R-27 (1978), 101–105.Google Scholar
  3. 3.
    S. Arnborg,On the complexity of multivariable query evaluation, FOA Rapport C 20292-D8, National Defence Research Institute, Stockholm, Sweden (1979).Google Scholar
  4. 4.
    S. Arnborg, D. G. Corneil and A. Proskurowski,Complexity of finding embeddings in a k-tree, TRITA-NA 8407, Royal Institute of Technology, Sweden (1984).Google Scholar
  5. 5.
    S. Arnborg and A. Proskurowski,Characterization and recognition of partial k-trees, TRITA-NA 8402, Royal Institute of Technology, Sweden (1984).Google Scholar
  6. 6.
    S. Arnborg and A. Proskurowski,Linear time algorithms for NP-hard problems on graphs embedded in k-trees, TRITA-NA-8404, The Royal Institute of Technology (1984).Google Scholar
  7. 7.
    B. Aspvall,Efficient algorithms for certain satisfiability and linear programming problems, PhD Thesis, STAN-CS-80-822, Stanford University, 1980.Google Scholar
  8. 8.
    L. W. Beineke and R. E. Pippert,Properties and characterizations of k-trees, Mathematika 18 (1971), 141–151.Google Scholar
  9. 9.
    U. Bertele and F. Brioschi,Nonserial Dynamic Programming, Academic Press, New York, 1972.Google Scholar
  10. 10.
    C. J. Colbourn and A. Proskurowski,Concurrent transmissions in broadcast networks, in Proc. 11th Int'l Coll. on Automata, Languages, and Programming, Antwerp, Springer Verlag, Berlin (1984), 128–136.Google Scholar
  11. 11.
    D. G. Cornell and J. M. Keil,A dynamic programming approach to the dominating set problem on k-trees, Dept. of Computer Science, University of Toronto, Technical report (1983).Google Scholar
  12. 12.
    D. G. Corneil, H. Lerchs and L. Stewart Burlingham,Complement reducible graphs, Discrete Appl. Math. 3 (1981), 163–174.CrossRefGoogle Scholar
  13. 13.
    M. Davis and H. Putnam,A computing procedure for quantification theory, J. ACM 7 (1960), 201–215.CrossRefGoogle Scholar
  14. 14.
    R. J. Duffin,Topology of series-parallel networks, J. Math. Anal. Appl. 10 (1965), 303–318.CrossRefGoogle Scholar
  15. 15.
    E. C. Freuder,Synthesizing constraint expressions, C. ACM 21 (1978), 958–966.CrossRefGoogle Scholar
  16. 16.
    M. R. Garey, R. L. Graham, D. S. Johnson and D. E. Knuth,Complexity results for bandwidth minimization, SIAM J. Appl. Math. 34 (1978), 835–859.CrossRefGoogle Scholar
  17. 17.
    M. R. Garey and D. S. Johnson,Computers and Intractability, W. H. Freeman and Company, San Francisco (1979).Google Scholar
  18. 18.
    F. Gavril,Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of chordal graph, SIAM J. Comput. 1 (1972), 180–187.CrossRefGoogle Scholar
  19. 19.
    G. Huet and D. Oppen,Equations and rewrite rules: a survey, in Formal Languages: Perspective and Open Problems (R. Book, Ed.), Academic Press, New York, 1980.Google Scholar
  20. 20.
    D. S. Johnson,The NP-Completeness column: an ongoing guide, J. of Algorithms 1–4 (1981–4).Google Scholar
  21. 21.
    S. Kirkpatrick, C.D. Gelatt, Jr. and M. P. Vecchi,Optimization by simulated annealing, SCIENCE 220 (1983), 671–680.Google Scholar
  22. 22.
    D. Rose,Triangulated graphs and the elimination process, J. Math. Anal. Appl. 32, (1970), 597–609.CrossRefGoogle Scholar
  23. 23.
    D. Rose,On simple characterizations of k-trees, Discrete Math. 7 (1974), 317–322.CrossRefGoogle Scholar
  24. 24.
    A. Rosenthal,Computing the reliability of a complex network, SIAM J. Appl. Math. 32 (1977) 384–393.CrossRefGoogle Scholar
  25. 25.
    A. Rosenthal,Dynamic programming is optimal for nonserial optimization problems, SIAM J. Comput. 11 (1982), 47–59.CrossRefGoogle Scholar
  26. 26.
    A. Rosenthal,Series-parallel reduction for difficult measures of network reliability, NETWORKS 11 (1981), 323–334.Google Scholar
  27. 27.
    K. Takamizawa, T. Nishizeki and N. Saito,Linear-time computability of combinatorial problems on series-parallel graphs, J. ACM 29 (1982), 623–641.CrossRefGoogle Scholar
  28. 28.
    R. E. Tarjan,Decomposition by clique separators, Discrete Math., to appear.Google Scholar
  29. 29.
    J. A. Wald and C. J. Colbourn,Steiner trees, partial 2-trees, and minimum IFI networks, Networks 13 (1983), 159–167.Google Scholar
  30. 30.
    D. L. Walz,Generating semantic descriptions from drawings of scenes with shadows. AI-TR-271, A.I. Lab, M.I.T., Cambridge, Mass., 1972.Google Scholar
  31. 31.
    S. H. Whitesides,An algorithm for finding clique cutsets, Inf. Proc. Letters 12 (1981), 31–32.CrossRefGoogle Scholar
  32. 32.
    M. Yannakakis,Computing the minimum fill-in is NP-complete, SIAM J. Alg. and Discr. Methods 2 (1981), 77–79.Google Scholar
  33. 33.
    M. Yannakakis,A polynomial algorithm for the MIN CUT LINEAR ARRANGEMENT of Trees, Proc. 24th Annual Symp. on Foundations of Computer Science, IEEE, 1983, 274–281.Google Scholar

Copyright information

© BIT Foundations 1985

Authors and Affiliations

  • Stefan Arnborg
    • 1
  1. 1.Department of Numerical Analysis and Computing ScienceThe Royal Institute of TechnologyStockholmSweden

Personalised recommendations