Advertisement

BIT Numerical Mathematics

, Volume 11, Issue 2, pp 212–216 | Cite as

On a conjecture by Erdös-Straus

  • D. G. Terzi
Article
  • 44 Downloads

Abstract

Two algorithms have been constructed. The first is intended for obtaining such residue-classes represented by the numberN to the given modulusM, that for the primenN (modM) equation (1) is solvable in natural numbersx,y,z. Particularly, whenM=120120 (see Table 2) we obtain 198 suchN, i.e. the hypothesis indicated below is true with a probability greater than 0.99835. The second algorithm is intended for testing the conjecture by Erdös-Straus when 107 <n≦108.

Keywords

Computational Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. J. Mordell,Diophantine equations, London · New York, Acad. Press, 1969.Google Scholar
  2. 2.
    Г. Дэвенпорт,Высuаaя арuфмеmuкa, Москва, 1965.Google Scholar
  3. 3.
    L. Antonio Rosati,Sull'equazione diofantea 4/n=1/x 1+1/x 2+1/x 3, Bolettino della Unione Matematica Italiana, serie III, Anno IX (1954), No. 1.Google Scholar
  4. 4.
    L. Bernstein,Zur Lösung der diophantischen Gleichung m/n=l 1 x+l 2 y+l 3 z,insbesondere im Fall m=4, J. reine und angew. Math., 1962, 211, No. 1–2.Google Scholar
  5. 5.
    Koichi Yamomoto,On the diophantine equation 4/n=1/x+1/y+1/z, Mem. Fac. Sci. Kyushu Univ., 1965, A19, No.1.Google Scholar

Copyright information

© BIT Foundations 1971

Authors and Affiliations

  • D. G. Terzi
    • 1
  1. 1.Institute of Mathematics Siberian BranchAcademy of Sciences of the UssrNovosibirsk 90Ussr

Personalised recommendations