Advertisement

BIT Numerical Mathematics

, Volume 7, Issue 2, pp 114–122 | Cite as

Tables on fifth power residuacity

  • Edgar Karst
Article

Abstract

In this paper 2 p ≡ 1 (modq),q=10p+1,p ≡ 3 (mod 4),p andq prime, is expressed uniquely (except for changes in sign and interchange ofx, y) in the formq=w2+25 (x2+y2)/2+125z2, 4wz=y2x2−4xy, withw, x, y, z odd, forp<105. For 105<p<106, allp such that 2 p ≡ 1 (mod 10p + 1),p ≡ 3 (mod 4),p and 10p + 1 prime, are listed.

Keywords

Computational Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. P. Alderson,On the Quintic Character of 2, Mathematika, 11 (1964), 125–130.Google Scholar
  2. 2.
    B. W. Brewer,On Certain Character Sums, Trans. Amer. Math. Soc., 99 (1961), 241–245.Google Scholar
  3. 3.
    W. Burnside,On Cyclotomic Quinquisection, Lond. Math. Soc. Proc., (2), 14 (1915), 251–259.Google Scholar
  4. 4.
    A. Cayley,The Binomial Equation x p−1=0:Quinquisection, Lond. Math. Soc. Proc., (1), 12 (1881), 15–16.Google Scholar
  5. 5.
    L. E. Dickson,Cyclotomy, higher congruences, and Waring's problem, Amer. Journ. Math., 57 (1935), 391–424.Google Scholar
  6. 6.
    R. Hull,The Numbers of Solutions of Congruences involving only k th Powers, Trans. Amer. Math. Soc., 34 (1932), 908–937.MathSciNetGoogle Scholar
  7. 7.
    E. Karst,List of All Prime Divisors q = 2Kp + 1 of 2 p − 1, K<10, p<15000, BIT, 3 (1963), 222–228.Google Scholar
  8. 8.
    E. Lehmer,The Quintic Character of 2 and 3, Duke Math. Journ., 18 (1951), 11–18.CrossRefGoogle Scholar
  9. 9.
    S. F. Robinson,The evaluation of a character sum (abstract 66T-28),A theorem on Brewer sums (abstract 66T-349), Not. Amer. Math. Soc., 13 (1966), 134 and 623.Google Scholar
  10. 10.
    H. W. Lloyd Tanner,On the binomial equation x p − 1 = 0:quinquisection, Lond. Math. Soc. Proc., (1), 18 (1887), 214–234.Google Scholar
  11. 11.
    H. W. Lloyd Tanner,On complex primes formed with the fifth root of unity, Lond. Math. Soc. Proc., 24 (1893) 223–272.Google Scholar

Copyright information

© BIT Foundations 1967

Authors and Affiliations

  • Edgar Karst
    • 1
  1. 1.University of ArizonaTucson

Personalised recommendations