BIT Numerical Mathematics

, Volume 28, Issue 2, pp 194–204 | Cite as

On-line sorting of twisted sequences in linear time

  • F. Aurenhammer
Part I Computer Science


A sequence of real numbers is called twisted if it can be produced from the sorted sequence by repeatedly reversing the order of consecutive subsequences. It is shown that twisted sequences constitute a class of exponentially many members each of which can be recognized and sorted, by a simple on-line algorithm, in linear time.

CR categories

E.2.2 F.2.1 


sorting algorithm worst-case complexity ordered tree geometric interpretation convex hull 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Aho, J. E. Hopcroft, and J. D. Ullman,Data Structures and Algorithms, Addison Wesley, Reading, MA (1983).Google Scholar
  2. 2.
    K. S. Booth and G. S. Luecker,Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Computer and System Sciences 13 (1976), pp. 335–379.Google Scholar
  3. 3.
    K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan,Sorting Jordan sequences in linear time using level-linked search trees, Information and Control 68 (1986), pp. 170–184.Google Scholar
  4. 4.
    R. Kemp,Fundamentals of the Average Case Analysis of Particular Algorithms, Wiley-Teubner Series Comp. Sci. (1984).Google Scholar
  5. 5.
    D. Knuth,The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison Wesley, Reading, MA (1973).Google Scholar
  6. 6.
    K. Mehlhorn,Data Structures and Algorithms, Vol. 1: Sorting and Searching, Springer-Verlag, Berlin (1984).Google Scholar
  7. 7.
    F. P. Preparata and M. I. Shamos,Computational Geometry, Springer-Verlag, New York (1985).Google Scholar

Copyright information

© BIT Foundations 1988

Authors and Affiliations

  • F. Aurenhammer
    • 1
  1. 1.Institutes for Information ProcessingTechnical University of Graz and Austrian Computer SocietyGrazAustria

Personalised recommendations