Advertisement

BIT Numerical Mathematics

, Volume 27, Issue 3, pp 350–367 | Cite as

IDeC — Convergence independent of error asymptotics

  • W. Auzinger
  • J. P. Monnet
Part II Numerical Mathematics
  • 16 Downloads

Abstract

The present paper is concerned with the method of Iterated Defect Correction (IDeC) for two-point boundary value problems. We investigate the contractive behaviour of the IDeC iteration in a completely discrete setting. Our results (which are a generalization of “classical” results based on asymptotic expansions of the discretization error) imply the stability of the collocation method which defines the fixed point of the IDeC iteration.

1980 AMS Subject Classification

65B05 65L10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Auzinger,Defect corrections for multigrid solutions of the Dirichlet problem in general domains, Math. Comp. (April 1987), 471–484.Google Scholar
  2. 2.
    J. Christiansen and R. D. Russell,Deferred corrections using uncentered end formulas, Numer. Math. 35 (1980), 21–33.Google Scholar
  3. 3.
    L. Fox,The Numerical Solution of Two-point Boundary Value Problems, Oxford University Press, Oxford (1957).Google Scholar
  4. 4.
    R. Frank,The method of iterated defect correction and its application to two-point boundary value problems, part I, Numer. Math. 25 (1976), 409–419.Google Scholar
  5. 5.
    R. Frank,The method of iterated defect correction and its application to two-point boundary value problems, part II, Numer. Math. 27 (1977), 407–420.Google Scholar
  6. 6.
    R. Frank, J. Hertling and J. P. Monnet,The application of iterated defect correction to variational methods for elliptic boundary value problems, Computing 30 (1983), 121–135.Google Scholar
  7. 7.
    F. B. Hildebrand,Introduction to Numerical Analysis, 2nd ed., MacGraw-Hill, New York, Toronto, London (1974).Google Scholar
  8. 8.
    H. B. Keller,Approximation methods for nonlinear problems with application to two-point boundary value problems, Math. Comp. 29 (1975), 464–474.Google Scholar
  9. 9.
    M. Lees, inNumerical Solution of Partial Differential Equations, J. H. Bramble, Ed., 1966, 59–72.Google Scholar
  10. 10.
    J. P. Monnet,Globale Kontraktionsaussagen und Konvergenzordnung der Defektkorrektur für 1-D Randwertprobleme (Einführung in die Problematik der 2-D Probleme), Ph.D. Thesis, Technical University of Vienna, 1986.Google Scholar
  11. 11.
    R. D. Skeel,The order of accuracy for deferred corrections using uncentered end formulas, SIAM J. Numer. Anal. 23 (1986), 393–402.Google Scholar
  12. 12.
    H. J. Stetter,The defect correction principle and discretization methods, Numer. Math. 29 (1978), 425–443.Google Scholar

Copyright information

© BIT Foundations 1987

Authors and Affiliations

  • W. Auzinger
    • 1
  • J. P. Monnet
    • 1
  1. 1.Institut für Angewandte und Numerische MathematikTechnische Universität WienWienAustria

Personalised recommendations