BIT Numerical Mathematics

, Volume 14, Issue 1, pp 106–111 | Cite as

A stability and error analysis of block methods for the numerical solution ofy″=f(x,y)

  • P. B. Worland


In this paper the author continues his study [2] of a particular class of block methods for the solution ofy″=f(x,y). Stability boundaries are determined, and the accumulated error of the method is analyzed.


Computational Mathematic Error Analysis Stability Boundary Block Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ansorge and W. Törnig,Zur Stabilität des Nyströmschen Verfahrens, Z. Angew. Math. Mech. 40 (1960), 568–570.Google Scholar
  2. 2.
    P. C. Chakravarti and P. B. Worland,A Class of Self-Starting Methods for the Numerical Solution of y″=f(x, y), BIT 11 (1971), 368–383.Google Scholar
  3. 3.
    J. T. Day,A One-Step Method for the Numerical Integration of the Differential Equation y″=f(x,y), Z. Angew. Math. Mech. 45 (1965), 354–356.Google Scholar
  4. 4.
    C. W. Gear,Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.Google Scholar
  5. 5.
    E. Grabbe, S. Ramo, and D. Wooldridge,Handbook of Automation, Computation, and Control, Vol. 1: Control Fundamentals, John Wiley, New York, 1958, 14–60.Google Scholar
  6. 6.
    P. Henrici,Discrete Variable Methods in Ordinary Differential Equations, John Wiley, New York, 1962.Google Scholar
  7. 7.
    W. Liniger,Zur Stabilität der Numerischen Integrationsmethoden für Differentialgleichungen, Thesis, Univ. Lausanne, 1956.Google Scholar
  8. 8.
    H. Rutishauser,Über die Instabilität von Methoden zur Integration gewöhnlicher Differentialgleichungen, A. Angew. Math. Phys. 3 (1952), 65–74.Google Scholar
  9. 9.
    H. Rutishauser,Bemerkungen zur numerischen Integration gewöhnlicher Differentialgleichungen n-ter Ordnung, Num. Math. 2 (1960), 263–279.Google Scholar
  10. 10.
    L. F. Shampine and H. A. Watts,Block Implicit One-Step Methods, Math. Comp. 23 (1969), 731–740.Google Scholar
  11. 11.
    W. P. Timlake,On the Numerical Solution of Special Second-Order Initial Value Problems, Thesis, Eidgenössische Technische Hochschule, Zürich, 1964.Google Scholar

Copyright information

© BIT Foundations 1974

Authors and Affiliations

  • P. B. Worland
    • 1
  1. 1.Department of Mathematics and Department of Computer ScienceThe University of NebraskaLincoln

Personalised recommendations