BIT Numerical Mathematics

, Volume 14, Issue 1, pp 87–95 | Cite as

Computation of rational interval functions

  • Stig Skelboe


This paper presents a general algorithm for computing interval expressions. The strategy is characterized by a subdivision of the argument intervals of the expression and a recomputation of the expression with these new intervals. The precision of the result is limited only by the actual computer.


Computational Mathematic General Algorithm Interval Function Actual Computer Interval Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Moore,Interval Analysis, p. 11, Prentice-Hall, 1966.Google Scholar
  2. 2.
    E. R. Hansen,Topics in interval Analysis, p. 103, Oxford University Press, 1969.Google Scholar
  3. 3.
    K. Nickel and K. Ritter,Termination criterion and numerical convergence, SIAM J. Numer. Anal. 9 (1972), 277–283.Google Scholar
  4. 4.
    N. Apostolatos et al.,The algorithmic language Triplex-Algol 60, Numerische Mathematik 11 (1968), 175–180.Google Scholar

Copyright information

© BIT Foundations 1974

Authors and Affiliations

  • Stig Skelboe
    • 1
  1. 1.Numerisk Institut Danmarks Tekniske HøjskoleLyngbyDenmark

Personalised recommendations