BIT Numerical Mathematics

, Volume 12, Issue 4, pp 543–554 | Cite as

The method of conjugate gradients used in inverse iteration

  • Axel Ruhe
  • Torbjörn Wiberg


An algorithm is devised that improves an eigenvector approximation corresponding to the largest (or smallest) eigenvalue of a large and sparse symmetric matrix. It solves the linear systems that arise in inverse iteration by means of the c-g algorithm. Stopping criteria are developed which ensure an accurate result, and in many cases give convergence after a small numer of c-g steps.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. M. Alsén,Multiple step gradient iterative methods for computing eigenvalues of large symmetric matrices, Tech. Rep. UMINF-15.71, Univ. of Umeå.Google Scholar
  2. 2.
    I. Björling,Lanczos algorithm für reella symmetriska matriser (In Swedish), Tech. Rep. UMINF-3.71, Univ. of Umeå.Google Scholar
  3. 3.
    W. W. Bradbury and R. Fletcher,New iterative methods for solution of the eigenproblem, Num. Math. 9 (1966), 259–267.Google Scholar
  4. 4.
    C. Davis and W. M. Kahan,The rotation of eigenvectors by a perturbation III, SIAM J. Num. An. 7 (1970), 1–46.Google Scholar
  5. 5.
    D. K. Faddev and V. N. Faddeeva,Computational Methods of Linear Algebra, (Transl.) Freeman & Co., San Francisco 1963.Google Scholar
  6. 6.
    G. E. Forsythe,On the asymptotic directions of the s-dimensional optimum gradient method, Num. Math. 11 (1968), 57–76.Google Scholar
  7. 7.
    I. Fried,Gradient method for finite-element eigenproblems, AIAA Journal 7 (1969), 739–741.Google Scholar
  8. 8.
    M. R. Hestenes and E. Stiefel,Methods of conjugate gradients for solving linear systems, Journal of Res. NBS 49 (1952), 409–436.Google Scholar
  9. 9.
    C. Lanczos,An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. NBS 45 (1950), 255–282.Google Scholar
  10. 10.
    D. G. Luenberger,Hyperbolic pairs in the method of conjugate gradients, SIAM J. Appl. Math. 17 (1969), 1263–1267.Google Scholar
  11. 11.
    C. C. Paige,Practical use of the symmetric Lanczos process with re-orthogonalization, BIT 10 (1970), 183–195.Google Scholar
  12. 12.
    J. K. Reid,On the method of conjugate gradients for the solution of large sparse systems of linear equations, pp. 231–254 in J. K. Reid (Ed.),Large Sparse Sets of Linear Equations, Acad. Press, London 1971.Google Scholar
  13. 13.
    H. Rutishauser,Simultaneous iteration method for symmetric matrices, pp. 284–302 in Handbook of Automatic Computations Vol. 2: Linear Algebra, Springer-Verlag, 1971.Google Scholar
  14. 14.
    J. H. Wilkinson,The Algebraic Eigenvalue Problem, Clarendon Press, Oxford 1965.Google Scholar
  15. 15.
    W. Karush,An iterative method for finding characteristic vectors of a symmetric matrix, Pacific J. Math. 1 (1951), 233–248.Google Scholar

Copyright information

© BIT Foundations 1972

Authors and Affiliations

  • Axel Ruhe
    • 1
  • Torbjörn Wiberg
    • 1
  1. 1.Dept. of Information ProcessingUniversity of UmeåSweden

Personalised recommendations