Journal of thermal analysis

, Volume 37, Issue 5, pp 1065–1101 | Cite as

Photothermal applications to the thermal analysis of solids

  • A. Mandelis
Special Review

Abstract

Major application of optically-induced thermal waves to the thermal and thermodynamic analysis of solids are reviewed. The spectrum of available techniques,from the conventional photoacoustic detection to novel photothermal laser probing and frequency multiplexing is discussed, and their utilization for the measurement of thermophysical thermal transport-related parameters of solids is presented. These include the thermal diffusivity, effusivity, conductivity and specific heat. The ability of photothermal methods to perform thermal analysis on large classes of solids, including conducting and insulating bulk materials, crystals, layered porous and coated structures, thin films and inhomogeneous thermal profiles is highlighted. Finally, special capabilities of photothermal analysis, such as the monitoring of surface thermodynamic phenomena and phase transition studies, including high-Tc superconductors, are described in order to give a complete overview of the rich potential of photothermal-based methodologies.

Zusammenfassung

Es wird ein Rückblick auf die wichtigsten Anwendungen von optischinduzierten WÄrmewellen bei der thermischen und thermodynamischen Analyse von Feststoffen gegeben. Es wird das gesamte Spektrum der verfügbaren Methoden besprochen, angefangen von der herkömmlichen photoakustischen Detektion bis hin zum neuen photothermischen Laser-Probing und Frequenz-Multiplexing. Ihre Anwendung für die Messung von thermophysischen WÄrmetransportparametern von Feststoffen wird dargelegt. Hierzu gehören TemperaturleitfÄhigkeit, Effusion, WÄrmeleitfÄhigkeit und die spezifische WÄrme. Es wird die FÄhigkeit photothermischer Methoden hervorgehoben, eine breite Gruppe von Feststoffen, darunter Leiter- und Isolatormaterialien, Kristalle, geschichtete poröse und beschichtete Strukturen, dünne Filmschichten und inhomogene thermische Profile, thermisch zu untersuchen. Zuletzt werden spezielle FÄhigkeiten der photothermischen Analyse, z.B. das Monitoring von thermodynamischen OberflÄchenphenomÄnen und Phasenumwandlungsuntersuchungen, einschlie\lich von Hoch-Tc-Supraleitern, beschrieben, um einen vollstÄndigen überblick über das breite LeistungsfÄhigkeit der Methoden auf photothermischer Basis zu geben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. H. Pao, Optoacoustic Spectroscopy and Detection, Academic, New York 1977.Google Scholar
  2. 2.
    A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy, Chemical Analysis, Vol. 57 Wiley, New York 1980.Google Scholar
  3. 3.
    A. Mandelis (ed.), Photoacoustic and Thermal Wave Phenomena in Semiconductors, North-Holland, New York 1987.Google Scholar
  4. 4.
    H. Coufal and A. Mandelis, Ferroelectrics (in press).Google Scholar
  5. 5.
    D. A. Hutchins and A. C. Tam, IEEE Trans. Ultrason., Ferroel., Freq.Control, UFFC-33, 429 (1986).Google Scholar
  6. 6.
    J.-P. Monchalin, IEEE Trans. Ultrason., Ferroel., Freq. Control, UFFC-33, 485 (1986).Google Scholar
  7. 7.
    A. Rosencwaig and A. Gersho, J. Appl. Phys., 47 (1976) 64.Google Scholar
  8. 8.
    W. B. Jackson, N. M. Amer, A. C. Boccara and D. Fournier, Appl. Opt., 20 (1981) 1333.Google Scholar
  9. 9.
    R. Santos and L. C. M. Miranda, J. Appl. Phys., 52 (1981) 4149.Google Scholar
  10. 10.
    A. Mandelis and M. M. Zver, J. Appl. Phys., 57 (1985) 4421.Google Scholar
  11. 11.
    A. Mandelis and B. S. H. Royce, J. Appl. Phys., 50 (1979) 4330.Google Scholar
  12. 12.
    J. G. Parker, Appl. Opt., 12 (1873) 2974.Google Scholar
  13. 13.
    M. J. Adams and G. F. Kirkbright, Spectrosc. Lett., 9 (1976) 255.Google Scholar
  14. 14.
    L. R. Ingersoll, O. J. Zobel and A. C. Ingersoll, Heat Conduction, Univ. Wisconsin Press, 1954.Google Scholar
  15. 15.
    V. E. Lyamov, U. Madaliev and R. E. Shikhlinskaya, Teplofiz. Vysok. Temp., 19 (1981) 93. [English Trans.]Google Scholar
  16. 16.
    A. Lachaine and P. Poulet, Appl. Phys. Lett., 45 (1984) 953.Google Scholar
  17. 17.
    K. N. Madhusoodanan, M. R. Thomas and P. Jacob, J. Appl. Phys., 62 (1987) 1162.Google Scholar
  18. 18.
    B. K. Bein, H. W. Schmidt, J. Gibkes, J. Pelzl and P. S. Bechthold, Proc. 6th Int. Top. Meet. on Photoacoustic and Photothermal Phenomena II, J. C. Murphy, J. W. Maclachlan Spicer, L. C. Aamodt and B. S. H. Royce, Eds. Springer-Verlag, Berlin 1990 p. 86.Google Scholar
  19. 19.
    B. K. Bein and J. Pelzl, Proc. 4th Int. Carbon Conf. CARBON 86, Baden-Baden, Deutsche Keram. Gesellschaft, 1986, p. 268.Google Scholar
  20. 20.
    B. K. Bein, S. Krüger and J. Pelzl, Proc. 4th int Carbon Conf. CARBON 86, Baden-Baden, Deutsche Keram. Gesellschaft, 1986, p. 231; B: K. Bein, S. Krueger and J. Pelzl, J. Nucl. Mat., 119 (1986) 141; B. K. Bein, S. Krueger and J. Pelzl, J. Nucl. Mat., 145 (1987) 458.Google Scholar
  21. 21.
    A. Mandelis, Y. C. Teng and B. S. H. Royce, J. Appl. Phys., 50 (1979) 7138.Google Scholar
  22. 22.
    N. C. Fernelius, J. Appl. Phys., 51 (1980) 650.Google Scholar
  23. 23.
    T. Papa, F. Scudieri and D. Sette, Nuovo Cimento, 1D (1982) 129.Google Scholar
  24. 24.
    U. Zammit, M. Marinelli, F. Scudieri and S. Martelucci, Appl. Phys. Lett., 50 (1987) 830.Google Scholar
  25. 25.
    A. Mandelis and J. D. Lymer, Appl. Spectrosc., 39 (1985) 473.Google Scholar
  26. 26.
    H. W. Godbee and W. T. Ziegler, J. Appl. Phys., 37 (1966) 40; and J. Appl. Phys., 37 (1966) 56.Google Scholar
  27. 27.
    B. K. Bein, U. Bertsch, W. Rubelowski, M. M. F. d'Aguiar Neto nad J. Pelzl, Proc. 6th Int. Top. Meet. on Photoacoustic and Photothermal Phenomena II, J. C. Murphy, J. W. Maclachlan Spicer, L. C. Aamodt and B. S. H. Royce, Eds. Springer-Verlag, Berlin 1990 p. 82.Google Scholar
  28. 28.
    S. Aithal, G. Rousset, L. Bertrand, P. Cielo and S. Dallaire, Thin Solid Films, 119 (1984) 153.Google Scholar
  29. 29.
    P. Charpentier, F. Lepoutre and L. Bertrand, J. Appl. Phys., 53 (1982) 608.Google Scholar
  30. 30.
    R. T. Swimm, Appl. Phys. Lett., 42 (1983) 955.Google Scholar
  31. 31.
    B. Bonno, J. L. Laporte and Y. Rousset, J. Appl. Phys., 67 (1990) 2253.Google Scholar
  32. 32.
    T. Hashimioto, J. Cao and A. Takaku, Thermochim. Acta, 120 (1987) 191.Google Scholar
  33. 33.
    P. Korpiun, B. Merté, G. Fritsch, R. Tilgner and E. Lüscher, Colloid & Polymer Sci., 261 (1983) 312.Google Scholar
  34. 34.
    H. G. Kilian and M. Pietralla, Polymer, 19 (1978) 664.Google Scholar
  35. 35.
    C. L. Choy and K. Young, Polyner, 18 (1977) 769.Google Scholar
  36. 36.
    L. F. Perondi and L.C. M. Miranda, J. Appl. Phys., 62 (1987) 2955.Google Scholar
  37. 37.
    G. Rousset, F. Lepoutre and L. Bertand, J. Appl. Phys., 54 (1983) 2383.Google Scholar
  38. 38.
    O. Pessoa, Jr., C. L. Cesar, N. A. Patel, H. Vargas, C. C. Ghizoni and L. C. M. Miranda, J. Appl. Phys., 59 (1986) 1316.Google Scholar
  39. 39.
    H. Vargas and L. G. M. Miranda, in Photoacoustic and Thermal Wave Phenomena in Semiconductors, A. Mandelis, Ed. North-Holland, New York 1987 Chap.6.Google Scholar
  40. 40.
    A. C. Bento, H. Vargas, M. M. F. Aguiar and L. C. M. Miranda, Phys. Chem. Glasses, 28 (1987) 127.Google Scholar
  41. 41.
    N. F. Leite, N. Cella, H. Vargas and L. C. M. Miranda, J. Appl. Phys., 61 (1987) 3025.Google Scholar
  42. 42.
    W. Jackson and N. M. Amer, J. Appl. Phys., 51 (1980) 3343.Google Scholar
  43. 43.
    A. Biswas, T. Ahmed, K. W. Johnson, K. L. Telschow, J. C. Crelling and J. M. Myers, Can. J. Phys., 64 (1986) 1184.Google Scholar
  44. 44.
    A. K. S. Thakur, Lett. Heat Mass Transfer, 9 (1982) 385.Google Scholar
  45. 45.
    V. Gusev, Ts. Veliniv and K. Bransalov, Semicond. Sci. Technol., 4 (1989) 20.Google Scholar
  46. 46.
    H. J. Vidberg, J. Jaarinen and D. O. Riska, Can. J. Phys., 64 (1986) 1178.Google Scholar
  47. 47.
    J. Jaarinen and M. Luukkala, J. Phys. (Paris), 44, C6 (1983) 503.Google Scholar
  48. 48.
    A. Mandelis, S. B. Peralta and J. Thoen, J. Appl. Phys., (in press)Google Scholar
  49. 49.
    A. Mandelis, J. Math. Phys., 26 (1985) 2676.Google Scholar
  50. 50.
    A. Mandelis, E. Schoubs, S. B. Peralta and J. Thoen, J. Appl. Phys., (in press)Google Scholar
  51. 51.
    A. Mandelis and B.S. H. Royce, J. Appl. Phys., 51 (1980) 610.Google Scholar
  52. 52.
    J. T. Dodgson, A. Mandelis and C. Andreetta, Can. J. Phys., 64 (1986) 1074.Google Scholar
  53. 53.
    A. C. Boccara, D. Fournier and J. Badoz, Appl. Phys. Lett., 36 (1980) 130.Google Scholar
  54. 54.
    J. C. Murphy and L. C. Aamodt, J. Appl. Phys., 51 (1980) 4580.Google Scholar
  55. 55.
    W. B. Jackson, N. M. Amer, A. C. Boccara and D. Fournier, Appl. Opt., 20 (1981) 1333.Google Scholar
  56. 56.
    A. Mandelis, J. Appl.Phys., 54 (1983) 3404.Google Scholar
  57. 57.
    L. C. Aamodt and J. C. Murphy, J. Appl. Phys., 52 (1983) 581.Google Scholar
  58. 58.
    A. Salazar, A. Sánchez-Lavega and J. Fernandez, J. Appl. Phys., 65 (1989) 4150.Google Scholar
  59. 59.
    P. K. Kuo, M. J. Lin, C. B. Reyes, L. D. Favro, R. L. Thomas, D. S. Kim, S. Y. Zhang, L. J. Inglehart, D. Fournier, A. C. Boccara and N. Yacoubi, Can. J. Phys., 64 (1986) 1165.Google Scholar
  60. 60.
    P. K. Kuo, E. D. Sendler, L. D. Favro and R. L. Thomas, Can. J. Phys., 64 (1986) 1168.Google Scholar
  61. 61.
    R. L. Thomas, L. J. Inglefart, M. J. Lin, L. D. Favro and P. K. Kuo, Rev. Progr. Quant. Nondestr. Eval., D.O. Thompson and D. E. Chimenti, Eds. Plenum, New York Vol. 4B, 1985 p. 859.Google Scholar
  62. 62.
    A. Skumanich, H. Dersch, M. Fathallah and N. M. Amer, Appl. Phys., A43 (1987) 297.Google Scholar
  63. 63.
    A. Mandelis, Rev.Sci. Instrum., 57 (1986) 617.Google Scholar
  64. 64.
    A. Mandelis, L.M.-L. Borm and J. Tiessinga, Rev. Sci. Instrum., 57 (1986) 622.Google Scholar
  65. 65.
    A. Mandelis, L.M.-L. Borm and J. Tiessinga, Rev. Sci. Instrum., 57 (1986) 630.Google Scholar
  66. 66.
    A. Mandelis, IEEE TRans. Ultrason., Ferroel., Freq. Control, UFFC-33 (1986) 596.Google Scholar
  67. 67.
    A. C. Tam and B. Sullivan, Appl. Phys. Lett., 43 (1983) 333.Google Scholar
  68. 68.
    R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist and T. A. Strivens, J. Phys. E: Sci. Instrum., 17 (1984) 521.Google Scholar
  69. 69.
    A. C. Tam, in Photoacoustic and Thermal Wave Phenomena in Semiconductors, A. Mandelis, Ed. North-Holland, New York 1987. Chap.8.Google Scholar
  70. 70.
    W. P. Leung and A. C. Tam, Opt. Lett., 9 (1984) 93.Google Scholar
  71. 71.
    W. P. Leung and A. C. Tam, J. Appl. Phys., 56 (1985) 153.Google Scholar
  72. 72.
    R. E. Imhof, F. R. Thornley, J. R. Gilchrist and D. J. S. Birch, J. Phys. D: Appl. Phys., 19 (1986) 1829.Google Scholar
  73. 73.
    D. L. Balageas, A. A. Deom and D. M. Boscher, Mat. Eval., 45 (1987) 2608.Google Scholar
  74. 74.
    D. L. Balageas, J. C. Krapez and P. Cielo, J. Appl. Phys., 59 (1986) 348.Google Scholar
  75. 75.
    L. C. Aamodt, J. W. Maclachlan Spicer and J. C. Murphy, J. Appl. Phys., 68 (1990) 6087.Google Scholar
  76. 76.
    J. A. Stolwijk and J. D. Hardy, J. Appl. Physiol., 20 (1965) 1006.PubMedGoogle Scholar
  77. 77.
    P. Cielo, L. A. Utracki and M. Lamontagne, Can. J. Phys., 64 (1986) 1172.Google Scholar
  78. 78.
    H. Coufal, Appl. Phys. Lett., 44 (1984) 59.Google Scholar
  79. 79.
    A. Mandelis, Chem. Phys. Lett., 108 (1984) 388.Google Scholar
  80. 80.
    A. Mandelis and M. M. Zver, J. Appl. Phys., 57 (1985) 4421.Google Scholar
  81. 81.
    C. E. Yeack, R. L. Melcher and S. S. Jha, J. Appl. Phys., 53 (1982) 3947.Google Scholar
  82. 82.
    J. F. Power and A. Mandelis, Rev. Sci. Instrum., 58 (1987) 2024.Google Scholar
  83. 83.
    J. F. Power and A. Mandelis, Rev. Sci. Instrum., 58 (1987) 2018.Google Scholar
  84. 84.
    H. Coufal and P. Hefferle, Appl. Phys., A38 (1985) 213.Google Scholar
  85. 85.
    P. K. John, L. C. M. Miranda and A. Rastogi, Phys. Rev., B34 (1986) 4342.Google Scholar
  86. 86.
    S. B. Lang, Ferroelectrics, 93 (1987) 87.Google Scholar
  87. 87.
    G. C. Ghizoni and L. C. M. Miranda, Phys. Rev., B32 (1985) 8392.Google Scholar
  88. 88.
    P. S. Bechthold, M. Campagna and T. Schober, Solid state Commun., 36 (1980) 225.Google Scholar
  89. 89.
    P. Korpiun and R Tilgner, J. Appl. Phys., 51 (1980) 6115.Google Scholar
  90. 90.
    B. Büchner and P. Korpiun, Appl. Phys., B43 (1987) 29.Google Scholar
  91. 91.
    M. Grandolfo, C. Ranghiasci, P. Vecchia and Sh. M. Efendiev, Ferroelectrics, 56 (1984) 87.Google Scholar
  92. 92.
    C. Pichon. M. Le Liboux, D. Fournier and A. C. Boccara, Appl. Phys. Lett., 35 (1979) 435.Google Scholar
  93. 93.
    M. A. A. Siquiera, C. C. Ghizoni, J. I. Vargas, E. A. Menezas, H. Vargas and L. C. M. Miranda, J. Appl. Phys., 51 (1980) 1403.Google Scholar
  94. 94.
    A Mandelis, F. Care, K. K. Chan and L. C. M. Miranda, Appl. Phys., A38 (1985) 117.Google Scholar
  95. 95.
    S. Pekker and E. M. Eyring, Appl. Spectrosc., 40 (1986) 397.Google Scholar
  96. 96.
    R. Florian, J. Pelzl, M. Rosenberg, H. Vargas and R. Wernhardt, Phys. Stat Sol., A48 (1978) K35.Google Scholar
  97. 97.
    S. Kojima, Jpn. J. Appl. Phys., 24 (1985) 1571.Google Scholar
  98. 98.
    S. Kojima, Jpn. J. Appl. Phys., 25 (1986) 215.Google Scholar
  99. 99.
    R. E. Imhof, F. R. Thornley, J. R. Gilchrist and D. J. S. Birch, Appl. Phys., B43 (1987) 23.Google Scholar
  100. 100.
    L. Gomes, M. M. F. Vieira, S. L. Baldochi, N. B. Lima, M. A. Novac, N. D. Vieira, Jr., S. P. Morato. A. J. P. Braga, C. L. Cesar, A. F. S. Penna and J. Mendes Filho, J. Appl. Phys., 63 (1988) 5044.Google Scholar
  101. 101.
    Y. S. Song, H. K. Lee and N. S. Chang, J. Appl. Phys., 65 (1989) 2568.Google Scholar
  102. 102.
    M. Marinelli, F. Murtas, M. G. Mecozzi, U. Zammit, R. Pizzoferrato, F. Scudieri, S. Martellucci and M. Marinelli, Appl. Phys., A51 (1990) 387.Google Scholar
  103. 103.
    S. B. Peralta, Z. H. Chen and A. Mandelis, Appl. Phys. A (in press); S. B. Peralta, Z. H. Chen and A. Mandelis, Feroelectrics (in press)Google Scholar
  104. 104.
    P. Hess, in Photoacoustic, Photothermal and Photochemical Processes at Surface and in Thin Films, P. Hess, Ed. Springer-Verlag, Berlin 1989. Chap. 3.Google Scholar
  105. 105.
    M. Buck and P. Hess, J. Electron Spectrosc., 45 (1987) 237.Google Scholar
  106. 106.
    L. M. Cousins and S. R. Leone, Chem. Phys. Lett., 155 (1989) 162.Google Scholar
  107. 107.
    W. C. Natzle, D. Padowitz and G. J. Sibener, J. Chem. Phys., 88 (1988) 7975.Google Scholar
  108. 108.
    H. Coufal, F. TrÄger, T. J. Chuang and A. C. Tam, Surf. Sci. Lett., 145 (1984) L504.Google Scholar
  109. 109.
    H. Coufal, T. J. Chuang and F. TrÄger, IBM Res. Report, RJ 4344 (1984).Google Scholar
  110. 110.
    F. TrÄger, H. Coufal and T. J. Chuang, Phys. Rev. Lett., 49 (1982) 1720.Google Scholar
  111. 111.
    T. J. Chuang, H. Coufal and F. TrÄger, J. Vac. Sci. Technol., A1 (1983) 1236.Google Scholar
  112. 112.
    M. C. Cresser and N. T. Livesey, Analyst, 109 (1984) 219.Google Scholar
  113. 113.
    A. Lörincz and A. Miklós, in Progresse in Photothermal and Photoacoustic Science and Technology, A. Mandelis, Ed. (North-Holland, New York in press).Google Scholar

Copyright information

© Wiley Heyden Ltd., Chichester and Akadémiai Kiadó, Budapest 1991

Authors and Affiliations

  • A. Mandelis
    • 1
  1. 1.Photoacoustic and Photothermal Sciences Laboratory, Department of Mechanical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations