BIT Numerical Mathematics

, Volume 18, Issue 2, pp 125–132 | Cite as

Recursive samplesort

  • Peter M. G. Apers


A sorting algorithm called Recursive Samplesort is described and analyzed. An extensive average case analysis demonstrates that Recursive Samplesort is faster than both Samplesort and Quicksort, with respect to certain linear combinations of the number of comparisons and move instructions needed.

Key words

internal sorting quicksort samplesort minimalstorage sorting treesort 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. M. G. Apers,Recursive Samplesort, Technical Report IR 15 (1976), Vrije Universiteit, Amsterdam.Google Scholar
  2. 2.
    W. D. Frazer and A. C. McKellar,Samplesort: A Sampling Approach to Minimal Tree Sorting, J. ACM 17 (1970), 496–507.CrossRefGoogle Scholar
  3. 3.
    C. A. R. Hoare,Quicksort, Comp. J. 5 (1962), 10–15.CrossRefGoogle Scholar
  4. 4.
    J. G. Peters and P. S. Kritzinger,Implementation of Samplesort: a Minimal Storage Tree Sort, BIT 15 (1975), 85–93.Google Scholar
  5. 5.
    R. Sedgewick,Quicksort, PhD. Thesis STAN-CS-75-492 (1975), Stanford University.Google Scholar

Copyright information

© BIT Foundations 1978

Authors and Affiliations

  • Peter M. G. Apers
    • 1
  1. 1.Information Science Dept.Vrije Universiteit Wisk Undig SeminariumAmsterdamThe Netherlands

Personalised recommendations