BIT Numerical Mathematics

, Volume 19, Issue 3, pp 312–320 | Cite as

A linear time approximation algorithm for multiprocessor scheduling

  • Greg Finn
  • Ellis Horowitz


Givenn jobs andm identical processors anO(n) approximation algorithm is presented which tries to determine a nonpreemptive schedule with minimum finish time. Ifr is the number of jobs placed onto the processor with maximum finish time, then the worst case ratio of the new algorithm's finish time to the optimal solution is shown to be less thanrm/(rmm+1). Extensive empirical results show that the new algorithm is competitive with the LPT algorithm in terms of quality of solution and faster in terms of computing time.

Key words

scheduling minimum finish time approximation algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. G. Coffman, M. R. Garey, and D. S. Johnson,An application of bin-packing to multiprocessor scheduling, SIAM J. Comput., vol. 7, no. 1, Feb. 1978, 1–17.CrossRefGoogle Scholar
  2. 2.
    E. G. Coffman and Ravi Sethi,A generalized bound on LPT scheduling, Revue française d'automatique informatique recherche operationelle, vol. 10, no. 5, May 1976, pp. 17–25.Google Scholar
  3. 3.
    E. G. Coffman, ed.,Computer and job/shop scheduling theory, John Wiley, New York, 1976.Google Scholar
  4. 4.
    M. R. Garey and D. S. Johnson,Computers and intractability, Freeman, San Francisco, 1979.Google Scholar
  5. 5.
    R. L. Graham,Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math. 17 (1969), pp. 416–429.CrossRefGoogle Scholar
  6. 6.
    E. Horowitz and S. Sahni,Fundamentals of data structures, Computer Science Press, Potomac Md. 1976.Google Scholar
  7. 7.
    E. Horowitz and S. Sahni,Fundamentals of computer algorithms. Computer Science Press, Potomac Md. 1978.Google Scholar
  8. 8.
    J. D. Ullman,Complexity of sequencing problems, Computer and Job/shop scheduling theory, E. G. Coffman, ed. John Wiley, New York, 1976, Chap. 4.Google Scholar
  9. 9.
    J. H. Ahrens and U. Dieter,A combinatorial method for the generation of normally distributed random numbers, Math. Comp., vol. 27, Oct. 1973, 927–937.Google Scholar

Copyright information

© BIT Foundations 1979

Authors and Affiliations

  • Greg Finn
    • 1
  • Ellis Horowitz
    • 1
  1. 1.Computer Science DepartmentUniversity of Southern CaliforniaLos AngelesU.S.A.

Personalised recommendations