The Journal of Membrane Biology

, Volume 77, Issue 2, pp 77–91 | Cite as

Axonal microtubules necessary for generation of sodium current in squid giant axons: I. pharmacological study on sodium current and restoration of sodium current by microtubule proteins and 260K protein

  • Gen Matsumoto
  • Michinori Ichikawa
  • Akira Tasaki
  • Hiromu Murofushi
  • Hikoichi Sakai
Articles

Summary

Effects of the reagents suppressing or supporting axoplasmic microtubule assembly were studied on the Na ionic current of squid giant axons by perfusing the axon internally with the solution containing the reagent. Among the reagents suppressing the assembly, colchicine, vinblastine, podophyllotoxin, sulfhydryl reagents such as DTNB and NEM, and chaotropic anions such as iodide and bromide, were examined. These reagents reduced maximum Na conductance and shifted the voltage dependence of steady-state Na activation in a depolarizing direction along the voltage axis. They also made the voltage dependence less steep, but did not affect sodium inactivation appreciably. Effects on Na ionic current of reagents which support microtubule assembly (Taxol, DMSO, D2O and temperature) were opposite the effects of those agents suppressing assembly. At the same time, we demonstrated that after Na currents were partially reduced, they could be restored by internally perfusing the axon with a solution containing microtubule proteins, 260K proteins and cAMP under conditions favorable for microtubule assembly. For full restoration, it was found that the following conditions were necessary: (1) The microenvironment within the axon is suitable for microtubule assembly. (2) Tubulins incorporated into microtubules are fully tyrosinated at their C-termini. (3) A peripheral protein having a molecular weight of 260,000 daltons (260K protein) is indispensable. These results suggest that axoplasmic microtubules and 260K proteins in the structure underlying the axolemma play a role in generating Na currents in squid giant axons.

Key Words

Na current axoplasmic microtubules 260K proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman, W., Palti, Y. 1969. The effect of external potassium and long duration voltage conditioning in the amplitude of sodium currents in the giant axon of the squidLoligo pealei.J. Gen. Physiol. 54:589–606PubMedGoogle Scholar
  2. Armstrong, C.M., Bezanilla, F., Rojas, E. 1973. Destruction of sodium conductance inactivation in squid axons perfused with pronase.J. Gen. Physiol. 62:375–391PubMedGoogle Scholar
  3. Baker, P.F., Hodgkin, A.L., Shaw, T.I. 1962. Replacement of the axoplasm of giant nerve fibres with artificial solutions.J. Physiol. (London) 164:330–354Google Scholar
  4. Berlin, R.D., Caron, J.M., Huntley, R. 1982. New roles for tubulin membrane function.In: Biological Functions of Microtubules and Related Structures. H. Sakai, G.G. Borisy and H. Mohri, editors. pp. 405–424. Academic, TokyoGoogle Scholar
  5. Bezanilla, F., Armstrong, C.M. 1977. Inactivation of the sodium channel. I. Sodium current experiments.J. Gen. Physiol. 70:549–566PubMedGoogle Scholar
  6. Bezanilla, F., Taylor, R.E. 1978. Effect of temperatur on gating currents.Biophys. J. 21:85aGoogle Scholar
  7. Chandler, W.K., Meves, H. 1970. Slow changes in membrane permeability and long lasting action potentials in axons perfused with fluoride solutions.J. Physiol. (London) 211:707–728Google Scholar
  8. Cheung, W.Y. 1970. Cyclic 3′, 5′-nucleotide phosphodiesterase. Demonstration of an activator.Biochem. Biophys. Res. Commun. 38:533–538PubMedGoogle Scholar
  9. Conti, F., Palmieri, G. 1968. Nerve fiber behavior in heavy water under voltage-clamp.Biophysik 5:71–77PubMedGoogle Scholar
  10. Eaton, D.C., Brodwick, M.S. 1975. Effect of internal divalent cations on squid axon.Biophys. J. 15:41aGoogle Scholar
  11. Endo, S., Sakai, H., Matsumoto, G. 1979. Microtubules in squid giant axon.Cell Struct. Funct. 4:285–293Google Scholar
  12. Gillespie, J.I., Meves, H. 1980. The time course of sodium inactivation in squid giant axons.J. Physiol. (London) 299:289–307Google Scholar
  13. Himes, R.H., Burton, P.R., Kersey, R.N., Pierson, G.B. 1976. Brain tubulin polymerization in the absence of “microtubule-associated-proteins.”Proc. Natl. Acad. Sci. USA 73:4397–4399PubMedGoogle Scholar
  14. Hodge, A.J., Adelman, W.J., Jr. 1980. The neuroplasmic network inLoligo andHermissenda neurons.J. Ultrastruct. Res. 70:220–241PubMedGoogle Scholar
  15. Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (London) 117:500–544Google Scholar
  16. Inoué, S., Sato, H. 1967. Cell motility by labile association of molecules. The nature of mitotic fibers and their role in chromosomal movement.J. Gen. Physiol. 50:259–292PubMedGoogle Scholar
  17. Kakiuchi, S., Yamazaki, R. 1970. Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain. Studies on cyclic 3′, 5′-nucleotide phosphodiesterase (III).Biochem. Biophys. Res. Commun. 41:1104–1110PubMedGoogle Scholar
  18. Katz, G.M., Schwartz, T.L. 1974. Temporal control of voltageclamped membranes: An examination of principles.J. Membrane Biol. 17:275–291Google Scholar
  19. Kimura, J.E., Meves, H. 1979. The effect of temperature on the asymmetrical charge movement in squid giant axons.J. Physiol. (London) 289:479–500Google Scholar
  20. Kobayashi, T., Matsumoto, G. 1982. Cytoplasmic tubulin from squid nerve fully retains C-terminal tyrosine.J. Biochem. 92:647–652PubMedGoogle Scholar
  21. Kuriyama, R. 1975. Further studies on tubulin polymerizationin vitro.J. Biochem. 77:23–31Google Scholar
  22. Kuriyama, R., Sakai, H. 1974. Role of tubulin-SH groups in polymerization to microtubules. Functional-SH groups in tubulin for polymerization.J. Biochem. 761:651–654Google Scholar
  23. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680–685Google Scholar
  24. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275PubMedGoogle Scholar
  25. Marcum, J.M., Dedman, J.R., Brinkley, B.R., Means, R.R. 1978. Control of mictotubule assembly-disassembly by calcium-dependent regulator protein.Proc. Natl. Acad. Sci. USA 75:3771–3775PubMedGoogle Scholar
  26. Margolis, R.L., Wilson, L. 1977. Addition of colchicine-tubulin complex to microtubule ends: the mechanism of substoichiometric colchicine poisoning.Proc. Natl. Acad. Sci. USA 74:3466–3470PubMedGoogle Scholar
  27. Matsumoto, G. 1976. Transportation and maintenance of adult squid (Doryteuthis bleekeri) for physiological studies.Biol. Bull. 150:279–285PubMedGoogle Scholar
  28. Matsumoto, G., Ichikawa, M., Tasaki, A. 1984. Axonal microtubules necessary for generation of sodium current in squid giant axons: II. Effect of colchicine upon asymmetrical displacement current.J. Membrane Biol. 77:93–99Google Scholar
  29. Matsumoto, G., Kobayashi, T., Sakai, H. 1979. Restoration of the excitability of squid giant axon by tubulin-tyrosine ligase and microtubule proteins.J. Biochem. (Tokyo) 86:1155–1158Google Scholar
  30. Matsumoto, G., Murofushi, H., Endo, S., Kobayashi, T., Sakai, H. 1982a. Tyrosinated tubulin necessary for maintenance of membrane excitability in squid giant axon.In: Structure and Function of Excitable Cells. D.C. Chang, I. Tasaki and W.J. Adelman, editors. pp. 471–483. Plenum, New YorkGoogle Scholar
  31. Matsumoto, G., Murofushi, H., Endo, S., Sakai, H. 1982b. Microtubules composed of tyrosinated tubulin are required for membrane excitability in squid giant axon.In: Biological Functions of Microtubules and Related Structures. H. Sakai, H. Mohri, and G.G. Borisy, editors. pp. 391–404. Academic, TokyoGoogle Scholar
  32. Matsumoto, G., Murofushi, H., Sakai, H. 1980. The effects of reagents affecting microtubules and microfilaments on the excitation of the squid giant axon measured by the voltage-clamp method.Biomed. Res. 1:355–358Google Scholar
  33. Matsumoto, G., Sakai, H. 1979a. Microtubules inside the plasma membrane of squid giant axons and their possible physiological function.J. Membrane Biol. 50:1–14Google Scholar
  34. Matsumoto, G., Sakai, H. 1979b. Restoration of membrane excitability of squid giant axons by reagents activating tyrosine-tubulin ligase.J. Membrane Biol. 50:15–22Google Scholar
  35. Matsumoto, G., Shimada, J. 1980. Further improvement upon maintenance of adult squid (Doryteuthis bleekeri) in a small circular and closed-system aquarium tank.Biol. Bull. 159:319–324Google Scholar
  36. Matteson, D.R., Armstrong, C.M. 1982. Evidence for a population of sleepy sodium channels in squid axon at low temperature.J. Gen. Physiol. 79:739–758PubMedGoogle Scholar
  37. Metuzals, J., Tasaki, I. 1978. Subaxolammal filamentous network in the giant nerve fiber of the squid (Loligo pealei L.) and its possible role in excitability.J. Cell Biol. 78:597–621PubMedGoogle Scholar
  38. Meves, H. 1974. The effect of holding potential on the asymmetry currents in squid giant axons.J. Physiol. (London) 243:847–867Google Scholar
  39. Murofushi, H. 1980. Purification and characterization of tubulin-tyrosine ligase from porcine brain.J. Biochem. 87:979–984PubMedGoogle Scholar
  40. Murofushi, H., Minami, Y., Matsumoto, G., Sakai, H. 1983. Bundling of microtubulesin vitro by a high molecular weight protein prepared from the squid axon.J. Biochem. 93:639–650PubMedGoogle Scholar
  41. Narahashi, T., Anderson, N.C., Moore, J.W. 1967. Comparison of tetrodotoxin and procaine in internally perfused squid giant axons.J. Gen. Physiol. 50:1413–1428PubMedGoogle Scholar
  42. Ohtsubo, K., Sakai, H., Murofushi, H., Kuriyama, R. 1975. Electrophoretic separation of tubulin and subunits after S-sulfonation.J. Biochem. 77:17–21PubMedGoogle Scholar
  43. Olmsted, J.B., Borisy, G.G. 1975. Ionic and nucleotide requirements for microtubule polymerizationin vitro.Biochemistry 14:2996–3005PubMedGoogle Scholar
  44. Oxford, G.S., Wu, C.H., Narahashi, T. 1978. Removal of sodium channel inactivation in squid giant axons by N-bromoacetamide.J. Gen. Physiol. 71:227–247PubMedGoogle Scholar
  45. Pant, H.C., Shecket, G., Gainer, H., Lasek, R.J. 1978. Neurofilament protein is phosphorylated in the squid giant axon.J. Cell Biol. 78:R23-R27PubMedGoogle Scholar
  46. Rudy, B. 1978. Slow inactivation of sodium conductance in squid giant axons. Pronase resistance.J. Physiol. (London) 283:1–21Google Scholar
  47. Rudy, B. 1981. Slow inactivation of voltage-dependent channels.In: Nerve Membrane, Biochemistry and Function of Channel Proteins. G. Matsumoto and M. Kotani, editors. pp. 89–111. University of Tokyo Press, TokyoGoogle Scholar
  48. Runge, M.S., Schlaepfer, W.W., Williams, R.C., Jr. 1981. Isolation and characterization of neurofilaments from mammalian brain.Biochemistry 20:170–175PubMedGoogle Scholar
  49. Sakai, H. 1980. Regulation of microtubule assemblyin vitro.Biomed. Res. 1:359–375Google Scholar
  50. Sakai, H., Matsumoto, G. 1978. Tubulin and other proteins from squid giant axon.J. Biochem. 83:1413–1422PubMedGoogle Scholar
  51. Sato, H., Takahashi, T.C., Sata, Y. 1980. Isotope effect of heavy water on spindle assembly and anaphase chromosome movement in dividing cells.Eur. J. Cell Biol. 22:310Google Scholar
  52. Schauf, C.L. 1973. Temperature dependence of the ionic current kinetics ofMyxicola giant axons.J. Physiol. (London) 235:197–205Google Scholar
  53. Schauf, C.L., Bullock, J.O. 1980. Solvent substitution as a probe of channel gating inMyxicola. Differential effects of D2O on some components of membrane conductance.Biophys. J. 30:295–305PubMedGoogle Scholar
  54. Schiff, P.B., Fant, J., Horwitz, S.B. 1979. Promotion of microtubule assemblyin vitro by Taxol.Nature (London) 277:665–667Google Scholar
  55. Schiff, P.B., Horwitz, S.B. 1980. Taxol stabilizes microtubules in mouse fibroflast cells.Proc. Natl. Acad. Sci. USA 77:1561–1565PubMedGoogle Scholar
  56. Shelanski, M.L., Gaskin, F., Cantor, C.R. 1973. Microtubule assembly in the absence of added nucleotides.Proc. Natl. Acad. Sci. USA 70:765–768PubMedGoogle Scholar
  57. Sherline, P., Leung, J.T., Kipnis, D.M. 1976. Binding of colchicine to purified microtubule protein.J. Biol. Chem. 250:5481–5486Google Scholar
  58. Spudich, J.A., Watt, S. 1971. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin.J. Biol. Chem. 246:4866–4871Google Scholar
  59. Tasaki, I. 1968. Nerve Excitation, A Macromolecular Approach. Charles C. Thomas, Springfield, Mass.Google Scholar
  60. Tasaki, I., Singer, I., Takena, T. 1965. Effects of internal and external ionic environment on excitability of squid giant axon: A macromolecular approach.J. Gen. Physiol. 48:1095–1123PubMedGoogle Scholar
  61. Terakawa, S., Nagano, M., Watanabe, A. 1978. Intracellular pH and plateau duration of internally perfused squid giant axons.Jpn. J. Physiol. 28:847–862PubMedGoogle Scholar
  62. Vallee, R.B. 1982. A Taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs).J. Cell Biol. 92:435–442PubMedGoogle Scholar
  63. Wallin, M., Larsson, H., Edstrom, A. 1977. Tubulin sulfhydryl groups and polymerizationin vitro. Effect of di- and trivalent cations.Exp. Cell Res. 107:219–225PubMedGoogle Scholar
  64. Weber, K., Osborn, M. 1969. The reliability of molecular weight determination by dodecyl sulfate-polyacrylamide gel electrophoresis.J. Biol. Chem. 244:4406–4412PubMedGoogle Scholar
  65. Weisenberg, R.C., Borisy, G.G., Taylor, E.W. 1968. The colchicine-binding protein of mammalian brain and its relation to microtubules.Biochemistry 7:4466–4479PubMedGoogle Scholar
  66. Wilson, L. 1970. Properties of colchicine binding protein from chick embryo brain. Interactions with vinca alkaloids and podophyllotoxin.Biochemistry 9:4999–5007PubMedGoogle Scholar
  67. Wilson, L., Bamburg, J.R., Mizel, S.B., Grisham, L.M., Creswell, K.M. 1974. Interaction of drugs with microtubule proteins.Fed. Proc. 33:158–166PubMedGoogle Scholar
  68. Zackroff, R.V., Goldman, R.D. 1980.In vitro reassembly of squid brain intermediate filaments (neurofilaments): Purification by assembly-disassembly.Science 208:1152–1155PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Gen Matsumoto
    • 1
    • 2
  • Michinori Ichikawa
    • 1
    • 2
  • Akira Tasaki
    • 1
    • 2
  • Hiromu Murofushi
    • 1
    • 2
  • Hikoichi Sakai
    • 1
    • 2
  1. 1.Electrotechnical Laboratory, Tsukuba Science CityIbarakiJapan
  2. 2.Department of Biophysics and Biochemistry, Faculty of ScienceThe University of TokyoTokyoJapan
  3. 3.Institute of Applied PhysicsThe University of Tsukuba, Tsukuba Science CityIbarakiJapan

Personalised recommendations