Experientia

, Volume 50, Issue 3, pp 277–284

Homologous recombination in plants

  • H. Puchta
  • P. Swoboda
  • B. Hohn
Multi-Author Reviews

Abstract

In plants three different approaches have been used to study homologous DNA recombination; extrachromosomal recombination (ECR) between transfected DNA molecules, intrachromosomal recombination (ICR) between repeated genes integrated into and resident at the genome and recombination between introduced DNA and homologous sequences in the genome (gene targeting). ECR is efficient (10−1 to 10−3) and occurs mainly during a limited time period early after transfection. It proceeds predominantly via nonconservative single-strand annealing. ICR, which in most cases is described best by the double-strand break repair model of recombination, occurs at frequencies of one event in 105 to 107 cells. ICR takes place throughout the whole life-cycle of a plant, in all organs and at different developmental stages. As there exists no predetermined germline in plants, somatic recombination events can be transferred to the next generation. Recombination frequencies are enhanced by DNA damage. Gene targeting, like ICR, occurs at low rates in plant cells. Almost nothing is known about the enzymes involved in homologous recombination in plants.

Key words

Extrachromosomal recombination intrachromosomal recombination gene targeting single-strand annealing double-strand break repair 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assaad, F. A., and Signer, E. R., Somatic and germinal recombination of a direct repeat inArabidopsis. Genetics132 (1992) 553–566.PubMedGoogle Scholar
  2. 2.
    Barker, R. F., Harberd, N. P., Jarvis, M. G., and Flavell, R. B., Structure and evolution of the intragenic region in a ribosomal DNA repeat unit of wheat. J. molec. Biol.201 (1988) 1–17.PubMedGoogle Scholar
  3. 3.
    Baur, M., Potrykus, I., and Paszkowski, J., Intermolecular homologous recombination in plants. Molec. cell. Biol.10 (1990) 492–500.PubMedGoogle Scholar
  4. 4.
    Bilang, R., Peterhans, A., Bogucki, A., and Paszkowski, J., Single-stranded DNA as recombination substrate in plants assessed by stable and transient expression. Molec. cell. Biol.12 (1992) 329–336.PubMedGoogle Scholar
  5. 5.
    Bradley, A., Hasty, P., Davis, A., and Ramirez-Solis, R., Modifying the mouse: design and desire. Biotechnology10 (1992) 534–539.PubMedGoogle Scholar
  6. 6.
    Capecchi, M. R., Altering the genome by homologous recombination. Science244 (1989) 1288–1292.PubMedGoogle Scholar
  7. 7.
    Carlson, P. S., Mitotic crossing-over in a higher plant. Genet. Res. Camb.24 (1974) 109–112.Google Scholar
  8. 8.
    Cullis, C. A., DNA rearrangements in response to environmental stress, in: Advances in Genetics, vol. 28, Genomic Responses to Environmental Stress, pp. 73–97. Ed. J. G. Scandalios, Academic Press Inc., New York 1990.Google Scholar
  9. 9.
    Das, P. O., Levi-Minzi, S., Koury, M., Benner, M., and Messing, J., A somatic gene rearrangement contributing to genetic diversity in maize. Proc. natl Acad. Sci. USA87 (1990) 7809–7813.PubMedGoogle Scholar
  10. 10.
    de Groot, M. J. A., Offringa, R., Does, M. P., Hooykaas, P. J. J., and van den Elzen, P. J. M., Mechanisms of intermolecular homologous recombination in plants as studied with single- and double-stranded DNA molecules. Nucl. Acids Res.20 (1992) 2785–2794.PubMedGoogle Scholar
  11. 11.
    Engels, P., and Meyer, P., Comparison of homologous recombination frequencies in somatic cells of petunia and tobacco suggest two distinct recombination pathways. Plant J.2 (1992) 59–67.Google Scholar
  12. 12.
    Evans, D. A., and Paddock, E. F., Comparisons of somatic crossing over frequency inNicotiana tabacum and three other crop species. Can. J. Genet. Cytol.18 (1976) 57–65.Google Scholar
  13. 13.
    Flavell, R. B., Repeated sequences and genome change, in: Plant Gene Research, vol. 2, Genetic Flux in Plants, pp. 139–156. Eds B. Hohn and E. S. Dennis, Springer Verlag, Wien 1985.Google Scholar
  14. 14.
    Gal, S., Pisan, B., Hohn, T., Grimsley, N., and Hohn, B., Genomic homologous recombinationin planta. EMBO J.10, (1991) 1571–1578.PubMedGoogle Scholar
  15. 15.
    Haber, J. E., Exploring the pathways of homologous recombination. Curr. Opin. cell. Biol.4 (1992) 401–412.PubMedGoogle Scholar
  16. 16.
    Halfter, U., Morris, P. C., and Willmitzer, L., Gene targeting inArabidopsis thaliana. Molec. gen. Genet.231 (1992) 186–193.PubMedGoogle Scholar
  17. 17.
    Lebel, E. G., Masson, J., Bogucki, A., and Paszkowski, J., Stress-induced intrachromosomal recombination in plant somatic cells. Proc. natl Acad. Sci. USA90 (1993) 422–426.PubMedGoogle Scholar
  18. 18.
    Lebeurier, G., Hirth, L., Hohn, B., and Hohn, T.,In vivo recombination of cauliflower mosaic virus DNA. Proc. natl Acad Sci. USA79 (1982) 2932–2936.Google Scholar
  19. 19.
    Lee, K. Y., Lund, P., Lowe, K., and Dunsmuir, P., Homologous recombination in plant cells afterAgrobacterium-mediated transformation. Plant Cell2 (1990) 415–425.PubMedGoogle Scholar
  20. 20.
    Lichtenstein, C., Paszkowski, J., and Hohn, B., Intrachromosomal recombination between genomic repeats, in: Homologous Recombination and Gene Silencing in Plants. Ed. J. Paszkowski. Kluwer, Dordrecht, The Netherlands 1994 in press.Google Scholar
  21. 21.
    Lin, F.-L., Sperle, K., and Sternberg, N., Model for homologous recombination during transfer of DNA into mouse L cells: Role for DNA ends in the recombination process. Molec. cell. Biol.4 (1984) 1020–1034.PubMedGoogle Scholar
  22. 22.
    Lyznik, L. A., McGee, J. D., Tung, P.-T., Bennetzen, J. L. and Hodges, J. K., Homologous recombination between plasmid DNA molecules in maize protoplasts. Molec. gen. Genet.230 (1991) 209–218.PubMedGoogle Scholar
  23. 23.
    Maryon, E., and Carroll, D., Involvement of single-stranded tails in homologous recombination of DNA injected intoXenopus laevis oocyte nuclei. Molec. cell. Biol.11 (1991) 3268–3277.PubMedGoogle Scholar
  24. 24.
    Mosig, G., Mapping and distortions in bacteriophage crosses, in: Genetic Recombination, pp. 141–167. Eds R. Kucherlapati and G. Smith, American Society of Microbiology, Washington, D.C. 1988.Google Scholar
  25. 25.
    Offringa, R., de Groot, M. J. A., Haagsman, H. J., Does, M. P., van den Elzen, P. J. M., and Hooykaas, P. J. J., Extrachromosomal homologous recombination and gene targeting in plant cells afterAgrobacterium mediated transformation. EMBO J.9 (1990) 3077–3084.PubMedGoogle Scholar
  26. 26.
    Offringa, R., Franke-van Dijk, M. E. I., de Groot, M. J. A., van den Elzen, P. J. M., and Hooykaas, P. J. J., Nonreciprocal homologous recombination betweenAgrobacterium transferred DNA and a plant chromosomal locus. Proc. natl Acad. Sci. USA90 (1993) 7346–7350.PubMedGoogle Scholar
  27. 27.
    Ohl, S., Offringa, R., van den Elzen, P. J. M., and Hooykaas, P. J. J., Gene replacement in plants, in: Homologous Recombination and Gene Silencing in Plants. Ed. J. Paszkowski. Kluwer, Dordrecht, The Netherlands, 1994 in press.Google Scholar
  28. 28.
    Paszkowski, J., Baur, M., Bogucki, A. and Potrykus, I., Gene targeting in plants. EMBO J.7 (1988) 4021–4026.Google Scholar
  29. 29.
    Peterhans, A., Schlüpmann, H., Basse, C., and Paszkowski, J., Intrachromosomal recombination in plants. EMBO J.9 (1990) 3437–3445.PubMedGoogle Scholar
  30. 30.
    Petes, T. D., and Hill, C. W., Recombination between repeated genes in microorganisms. A. Rev. Genet.22 (1988) 147–168.Google Scholar
  31. 31.
    Puchta, H., Dujon, B., and Hohn, B., Homologous recombination in plant cells is enhanced byin vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucl. Acids Res.21 (1993) 5034–5040.PubMedGoogle Scholar
  32. 32.
    Puchta, H., and Hohn, B., A transient assay in plant cells reveals a positive correlation between extrachromosomal recombination rates and length of homologous overlap. Nucl. Acids Res.19 (1991) 2693–2700.PubMedGoogle Scholar
  33. 33.
    Puchta, H., and Hohn, B., The mechanism of extrachromosomal homologous DNA recombination in plant cells. Molec. gen. Genet.230 (1991) 1–7.PubMedGoogle Scholar
  34. 34.
    Puchta, H., Kocher, S., and Hohn, B., Extrachromosomal homologous DNA recombination in plant cells is fast and is not affected by CpG methylation. Molec. cell. Biol.12 (1992) 3372–3379.PubMedGoogle Scholar
  35. 35.
    Puchta, H., and Meyer, P., Substrate specificity of plant recombinases determined in extrachromosomal recombination systems, in: Homologous Recombination and Gene Silencing in Plants. Ed. J. Paszkowski. Kluwer, Dordrecht, The Netherlands 1994 in press.Google Scholar
  36. 36.
    Riederer, M. A., Grimsley, N. H., Hohn, B., and Jiricny, J., The mode of cauliflower mosaic virus propagation in the plant allows rapid amplification of viable mutant strains. J. gen. Virol.73 (1992) 1446–1456.Google Scholar
  37. 37.
    Stenger, D. C., Revington, G. N., Stevenson, M. C., and Bisaro, D. M., Replicational release of geminivirus genomes from tandemly repeated copies: Evidence for rolling-circle replication of a plant viral DNA. Proc. natl Acad. Sci. USA88 (1991) 8029–8033.PubMedGoogle Scholar
  38. 38.
    Swoboda, P., Gal, S., Hohn, B., and Puchta, H., Homologous recombination in whole plants. EMBO J.13 (1994) 484–489.PubMedGoogle Scholar
  39. 39.
    Swoboda, P., Hohn, B., and Gal, S., Somatic homologous recombination in planta: The recombination frequency is dependent on the allelic state of recombining sequences and may be influenced by genomic position effects. Molec. gen. Genet.237 (1993) 33–40.PubMedGoogle Scholar
  40. 40.
    Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W., The double-strand break repair model of recombination. Cell33 (1983) 25–35.PubMedGoogle Scholar
  41. 41.
    Tinland, B., Hohn, B., and Puchta, H.,Agrobacterium tumefaciens transfers single-stranded T-DNA into the plant cell nucleus (submitted).Google Scholar
  42. 42.
    Tovar, J., and Lichtenstein, C., Somatic and meiotic chromosomal recombination between inverted duplications in transgenic tobacco plants. Plant Cell4 (1992) 319–332.PubMedGoogle Scholar
  43. 43.
    Walbot, V., On the life strategies of plants and animals. Trends Genet.1 (1985) 1655–1659.Google Scholar
  44. 44.
    Waldman, A. S., and Liskay, R. M., Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Molec. cell. Biol.8 (1988) 5350–5357.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • H. Puchta
    • 1
  • P. Swoboda
    • 1
  • B. Hohn
    • 1
  1. 1.Friedrich Miescher-InstitutBasel(Switzerland)

Personalised recommendations