Advertisement

Experientia

, Volume 49, Issue 5, pp 417–428 | Cite as

Proteoglycans of basement membranes

  • R. Timpl
Multi-author Reviews Proteoglycans

Abstract

Proteoglycans carrying either heparan sulfate and/or chondroitin sulfate side chains are typical constituents of basement membranes. The most prominent proteoglycan (perlecan) consists of a 400–500 kDa core protein and three heparan sulfate chains. Electron microscopy and cDNA sequencing show a complex and elongated domain structure for the core protein which in part is homologous to that of the laminin A chain. This structure may be varied by alternative splicing and proteolysis. Integration into basement membranes probably occurs by heparan sulfate binding to laminin and collagen IV, core protein binding to nidogen and by limited self assembly. The proteoglycan is in addition a cell-adhesive protein which is recognized by β1 integrins. Several more proteoglycans with smaller core proteins (10–160 kDa) apparently exist in basement membranes but are less well characterized. Biological functions include control of filtration through basement membranes and binding of growth factors and protease inhibitors.

Key words

Heparan and chondroitin sulfate multidomain structure protein binding cell adhesion filtration growth factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appela, E., Weber, I. T., and Blasi, F., Structure and function of epidermal growth factor-like regions in proteins. FEBS Lett.231 (1988) 1–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Aumailley, M., Battaglia, C., Mayer, U., Reinhardt, D., Nischt, R., Timpl, R., and Fox, J. W., Nidogen mediates the formation of ternary complexes of basement membrane components. Kidney Int.43 (1993) 7–12.PubMedGoogle Scholar
  3. 3.
    Aumailley, M., Gerl, M., Sonnenberg, A., Deutzmann, R., and Timpl, R., Identification of the Arg-Gly-Asp sequence in laminin A chain as a latent cell-binding site being exposed in fragment P1. FEBS Lett.262 (1990) 82–86.CrossRefPubMedGoogle Scholar
  4. 4.
    Bashkin, P., Doctrow, S., Klagsbrun, M., Svahn, C.-M., Folkman, J., and Vlodavsky, I., Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparanase and heparin-like molecules. Biochemistry28 (1989) 1737–1743.CrossRefPubMedGoogle Scholar
  5. 5.
    Battaglia, C., Aumailley, M., Mann, K., Mayer, U., and Timpl, R., Structural basis of β1 integrin-mediated cell adhesion to a large heparan sulfate proteoglycan from basement membranes. Eur. J. Cell Biol. (1993) in press.Google Scholar
  6. 6.
    Battaglia, C., Mayer, U., Aumailley, M., and Timpl, R., Basement membrane heparan sulfate proteoglycan binds to laminin by its heparan sulfate chains and to nidogen by sites in the protein core. Eur. J. Biochem.208 (1992) 359–366.CrossRefPubMedGoogle Scholar
  7. 7.
    Beck, K., Hunter, I., and Engel, J., Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J.4 (1990) 148–160.PubMedGoogle Scholar
  8. 8.
    Bourdon, M. A., Krusius, T., Campbell, S., Schwartz, N. B., and Ruoslahti, E., Identification and synthesis of a recognition signal for the attachment of glycosaminoglycans to proteins. Proc. natl Acad. Sci. USA84 (1987) 3194–3198.PubMedGoogle Scholar
  9. 9.
    Brauer, P. R., Keller, K. M., and Keller, J. M., Concurrent reduction in the sulfation of heparan sulfate and basement membrane assembly in a cell model system. Development110 (1990) 805–813.PubMedGoogle Scholar
  10. 10.
    Castillo, C. J., Colburn, P., and Buonassisi, V., Characterization and N-terminal sequence of a heparan sulphate proteoglycan synthesized by endothelial cells in culture. Biochem. J.247 (1987) 687–693.PubMedGoogle Scholar
  11. 11.
    Clément, B., Segui-Real, B., Hassell, J. R., Martin, G. R., and Yamada, Y., Identification of a cell sulface-binding protein for the core protein of the basement membrane proteoglycan. J. biol. Chem.264 (1989) 12467–12471.PubMedGoogle Scholar
  12. 12.
    Clément, B., and Yamada, Y., A Mr 80 K hepatocyte surface protein(s) interacts with basement membrane components. Exp. Cell Res.187 (1990) 320–323.CrossRefPubMedGoogle Scholar
  13. 13.
    Cordon-Cardo, C., Vlodavsky, I., Heimovitz-Friedman, A., Hicklin, D., and Fuks, Z., Expression of basic fibroblast growth factor in normal human tissues. Lab. Invest.63 (1990) 832–840.PubMedGoogle Scholar
  14. 14.
    Couchman, J. R., Caterson, B., Christner, J. E., and Baker, J. R., Mapping by monoclonal antibody of glycosaminoglycans in connective tissues. Nature307 (1984) 650–652.CrossRefPubMedGoogle Scholar
  15. 15.
    Couchman, J. R., and Ljubimov, A. V., Mammalian tissue distribution of a large heparan sulfate proteoglycan detected by monoclonal antibodies. Matrix9 (1989) 311–321.PubMedGoogle Scholar
  16. 16.
    Danielson, K. G., Martinez-Hernandez, A., Hassell, J. R., and Iozzo, R. V., Establishment of a cell line from the EHS tumor: biosynthesis of basement membrane constituents and characterization of a hybrid proteoglycan containing heparan and chondroitin sulfate chains. Matrix12 (1992) 22–35.PubMedGoogle Scholar
  17. 17.
    David, G., and van den Berghe, H., Transformed mouse mammary epithelial cells synthesize undersulfated basement membrane proteoglycan. J. biol. Chem.258 (1983) 7338–7344.PubMedGoogle Scholar
  18. 18.
    Davis, G. E., Klier, F. G., Engvall, E., Cornbrooks, C., Varon, S., and Manthorpe, M., Association of laminin with heparan and chondroitin-sulfate-bearing proteoglycans in neurite-promoting factor complexes from rat Schwannoma cells. Neurochem. Res.12 (1987) 909–921.CrossRefPubMedGoogle Scholar
  19. 19.
    de Agostini, A. I., Watkins, S. C., Slayter, H. S., Youssoufian, H., and Rosenberg, R. D., Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: anti-thrombin binding on cultured endothelial cells and perfused rat aorta. J. Cell Biol.111 (1990) 1293–1304.CrossRefPubMedGoogle Scholar
  20. 20.
    Desjardins, M., and Bendayan, M., Heterogenous distribution of type IV collagen, entactin, heparan sulfate proteoglycan, and laminin along renal basement membranes as demonstrated by quantitative immunocytochemistry. J. Histochem. Cytochem.37 (1989) 885–897.PubMedGoogle Scholar
  21. 21.
    Deutzmann, R., Aumailley, M., Wiedemann, H., Pysny, W., Timpl, R., and Edgar, D., Cell adhesion, spreading and neurite stimulation by laminin fragment E8 depends on maintenance of secondary and tertiary structure in its rod and globular domain. Eur. J. Biochem.191 (1990) 513–522.CrossRefPubMedGoogle Scholar
  22. 22.
    Dodge, G. R., Kovalszky, I., Chu, M.-L., Hassell, J. R., McBride, O. W., Yi, H. F., and Iozzo, R. V., Heparan sulfate proteoglycan of human colon: partial molecular cloning, cellular expression, and mapping of the gene (HSPG 2) to the short arm of human chromosome 1. Genomics10 (1991) 673–680.CrossRefPubMedGoogle Scholar
  23. 23.
    Dodge, G. R., Kovalszky, I., Hassell, J. R., and Iozzo, R. V., Transforming growth factor β alters the expression of heparan sulfate proteoglycan in human colon carcinoma cells. J. biol. Chem.265 (1990) 18023–18029.PubMedGoogle Scholar
  24. 24.
    Dziadek, M., Fujiwara, S., Paulsson, M., and Timpl, R., Immunological characterization of basement membrane types of heparan sulfate proteoglycan. EMBO J.4 (1985) 905–912.PubMedGoogle Scholar
  25. 25.
    Edge, A. S. B., and Spiro, R. G., Selective deglycosylation of the heparan sulfate proteoglycan of bovine glomerular basement membrane and identification of the core protein. J. biol. Chem.262 (1987) 6893–6898.PubMedGoogle Scholar
  26. 26.
    Edge, A. S. B., and Spiro, R. G., Characterization of novel sequences containing 3-O-sulfated glucosamine in glomerular basement membrane heparan sulfate and localization of sulfated dissaccharides to a peripheral domain. J. biol. Chem.265 (1990) 15874–15881.PubMedGoogle Scholar
  27. 27.
    Eldridge, C. F., Sanes, J. R., Chiu, A. Y., Bunge, R. P., and Cornbrooks, C. J., Basal lamina-associated heparan sulphate proteoglycan in the rat PNS: characterization and localization using monoclonal antibodies. J. Neurocytol.15 (1986) 37–51.PubMedGoogle Scholar
  28. 28.
    Engel, J., Hunter, I., Schulthess, T., Beck, K., Dixon, T. W., and Parry, D. A. D., Assembly of laminin isoforms by triple and double-stranded coiled-coil structures. Biochem. Soc. Trans.19 (1991) 839–843.PubMedGoogle Scholar
  29. 29.
    Farquhar, M. G., The glomerular basement membrane: a selective macromolecular filter, in: Cell Biology of Extracellular Matrix; pp. 365–418. Ed. E. D. Hay. Plenum Press, New York 1991.Google Scholar
  30. 30.
    Fayein, N. A., Courtois, Y., and Jeanny, J. C., Ontogeny of basic fibroblast growth factor binding sites in mouse occular tissue. Exp. Cell Res.188 (1990) 75–88.CrossRefPubMedGoogle Scholar
  31. 31.
    Fujiwara, S., Wiedemann, H., Timpl, R., Lustig, A., and Engel, J., Structure and interactions of heparan sulfate proteoglycans from a mouse tumor basement membrane. Eur. J. Biochem.143 (1984) 145–157.CrossRefPubMedGoogle Scholar
  32. 32.
    Gilchrist, E. J., and Moerman, D. G., Mutations in the sup-38 gene ofCaenorhabditis elegans suppress muscle attachment defects inunc-52 mutants. Genetics (1992) in press.Google Scholar
  33. 33.
    Gonzalez, A. M., Buscaglia, M., Ong, M., and Baird, A., Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes. J. Cell Biol.110 (1990) 753–765.CrossRefPubMedGoogle Scholar
  34. 34.
    Gordon, J. R., and Bernfield, M. R., The basal lamina of the postnatal mammary epithelium contains glycosaminoglycans in a precise ultrastructural organization. Dev Biol.74 (1980) 118–135.CrossRefPubMedGoogle Scholar
  35. 35.
    Grant, D. S., and Leblond, C. P., Immunogold quantitation of laminin, type IV collagen and heparan sulfate proteoglycan in a variety of basement membranes. J. Histochem. Cytochem.36 (1988) 271–283.PubMedGoogle Scholar
  36. 36.
    Grant, D. S., Leblond, C. P., Kleinman, H. K., Inoue, S., and Hassell, J. R., The incubation of laminin, collagen IV, and heparan sulfate proteoglycan at 35°C yields basement membrane-like structures. J. Cell Biol.108 (1989) 1567–1574.CrossRefPubMedGoogle Scholar
  37. 37.
    Hantaz-Ambroise, D., Vigny, M., and Koenig, J., Heparan sulfate proteoglycan and laminin mediate two different types of neurite outgrowth. J. Neurosci.7 (1987) 2293–2304.PubMedGoogle Scholar
  38. 38.
    Hassell, J. R., Gehron Robey, P., Barrach, H. J., Wilczek, J., Rennard, S. I., and Martin, G. R., Isolation of a heparan sulfate containing proteoglycan from basement membrane. Proc. natl. Acad. Sci. USA77 (1980) 4494–4498.PubMedGoogle Scholar
  39. 39.
    Hassell, J. R., Leyshon, W. C., Ledbetter, S. R., Tyree, B., Suzuki, S., Kato, M., Kimata, K., and Kleinman, H. K., Isolation of two forms of basement membrane proteoglycan. J. biol. Chem.260 (1985) 8098–8105.PubMedGoogle Scholar
  40. 40.
    Heremans, A., Cassiman, J.-J., van den Berghe, H., and David, G., Heparan sulfate proteoglycan from the extracellular matrix of human lung fibroblasts. Isolation, purification, and core protein characterization. J. biol. Chem.263 (1988) 4731–4739.PubMedGoogle Scholar
  41. 41.
    Heremans, A., De Cock, B., Cassiman, J.-J., van den Berghe, H., and David, G., The core protein of the matrix-associated heparan sulfate proteoglycan binds to fibronectin. J. biol. Chem.265 (1990) 8716–8724.PubMedGoogle Scholar
  42. 42.
    Heremans, A., Van der Schueren, B., de Cock, B., Paulsson, M., Cassiman, J.-J., van den Berghe, H., and David, G., Matrix-associated heparan sulfate proteoglycan: core protein-specific monoclonal antibodies decorate the peri-cellular matrix of connective tissue cells and the stromal side of basement membranes. J. Cell Biol.109 (1989) 3199–3211.CrossRefPubMedGoogle Scholar
  43. 43.
    Horner, A. A., Rat heparan sulphates. A study of the antithrombin-binding properties of heparan sulphate chains from adipose tissue, brain, carcase, heart, intestine, kidneys, liver, lung, skin and spleen. Biochem. J.266 (1990) 553–559.PubMedGoogle Scholar
  44. 44.
    Horiguchi, Y., Couchman, J. R., Ljubimov, A. V., Yamasaki, H., and Fine, J. D., Distribution, ultrastructural localization, and ontogeny of the core protein of a heparan sulfate proteoglycan in human skin and other basement membranes. J. Histochem. Cytochem.37 (1989) 961–970.PubMedGoogle Scholar
  45. 45.
    Inoue, S., Grant, D., and Leblond, C. P., Heparan sulfate proteoglycan is present in basement membrane as a double-tracked structure. J. Histochem. Cytochem.37 (1989) 597–602.PubMedGoogle Scholar
  46. 46.
    Iozzo, R. V., and Clark, C. C., Biosynthesis of proteoglycans by rat embryo parietal yolk sacs in organ culture. J. biol. Chem.262 (1986) 6658–6669.Google Scholar
  47. 47.
    Iozzo, R. V., and Hassell, J. R., Identification of the precursor protein for the heparan sulfate proteoglycan of human colon carcinoma cells and its post-translational modifications. Archs Biochem. Biophys.269 (1989) 239–249.CrossRefGoogle Scholar
  48. 48.
    Isemura, M., Sato, N., Yamaguchi, Y., Aikawa, J., Munakata, H., Hayashi, N., Yosizawa, Z., Nakamura, T., Kubota, A., Arakawa, M., and Hsu, C.-C., Isolation and characterization of fibronectin-binding proteoglycan carrying both heparan sulfate and dermatan sulfate chains from human placenta. J. biol. Chem.262 (1987) 8926–8933.PubMedGoogle Scholar
  49. 49.
    Ishai-Michaeli, R., Eldor, A., and Vlodavsky, I., Heparanase activity expressed by platelets, neutrophiles and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Regul.1 (1990) 833–842.PubMedGoogle Scholar
  50. 50.
    Iwata, M., and Carlsson, S. S., A large chondroitin sulfate basement membrane-associated proteoglycan exists as a disulfide-stabilized complex of several proteins. J. biol. Chem.266 (1991) 323–333.PubMedGoogle Scholar
  51. 51.
    Jalkanen, M., Nguyen, H., Rapraeger, A., Kurn, N., and Bernfield, M., Heparan sulfate proteoglycans from mouse mammary epithelial cells: localization on the cell surface with a monoclonal antibody. J. Cell Biol.101 (1985) 976–984.CrossRefPubMedGoogle Scholar
  52. 52.
    Kallunki, P., Eddy, R. L., Byers, M. G., Kestilä, M., Shows, T. B., and Tryggvason, K., Cloning of human heparan sulfate proteoglycan core protein, assignment of the gene (HSPG2) to 1p361-p35 and identification of a BamHI restriction fragment length polymorphism. Genomics11 (1991) 389–396.PubMedGoogle Scholar
  53. 53.
    Kallunki, P., and Tryggvason, K., Human basement membrane heparan sulfate proteoglycan core protein: A 467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules and epidermal growth-factor. J. Cell Biol.116 (1992) 559–571.CrossRefPubMedGoogle Scholar
  54. 54.
    Kanwar, Y. S., Biophysiology of glomerular filtration and proteinuria. Lab. Invest.51 (1984) 7–21.PubMedGoogle Scholar
  55. 55.
    Kanwar, Y. S., and Farquhar, M. G., Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes. J. Cell Biol.81 (1979) 137–153.CrossRefPubMedGoogle Scholar
  56. 56.
    Kanwar, Y. S., and Farquhar, M. G., Presence of heparan sulfate in the glomerular basement membrane. Proc. natl Acad. Sci. USA76 (1979) 1303–1307.PubMedGoogle Scholar
  57. 57.
    Kanwar, Y. S., and Farquhar, M. G., Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes. Proc. natl Acad. Sci. USA76 (1979) 4493–4497.PubMedGoogle Scholar
  58. 58.
    Kanwar, Y. S., Veis, A., Kimura, J. H., and Jakubowski, M. L., Characterization of heparan sulfate proteoglycan of glomerular basement membranes. Proc. natl Acad. Sci. USA81 (1984) 762–766.PubMedGoogle Scholar
  59. 59.
    Kato, M., Koike, Y., Ito, Y., Suzuki, S., and Kimata, K., Multiple forms of heparansulfate proteoglycans in the Engelbreth-Holm-Swarm Mouse tumor. The occurrence of high density forms bearing both heparan sulfate and chondroitin sulfate side chains. J. biol. Chem.262 (1987) 7180–7188.PubMedGoogle Scholar
  60. 60.
    Keller, R., and Furthmayr, H., Isolation and characterization of basement membrane and cell proteo-heparan sulphates from HR9 cells. Eur. J. Biochem.161 (1986) 707–714.CrossRefPubMedGoogle Scholar
  61. 61.
    Klein, D. J., Brown, D. M., Oegema, T. R., Brenchley, P. E., Anderson, J. C., Dickinson, M. A. J., Horigan, E. A., and Hassell, J. R., Glomerular basement membrane proteoglycans are derived from a large precursor. J. Cell Biol.106 (1988) 963–970.CrossRefPubMedGoogle Scholar
  62. 62.
    Lander, A. D., Fuji, D. K., Gospodarowicz, D., and Reichardt, L. F., Characterization of a factor that promotes neurite outgrowth: evidence linking activity to a heparan sulfate proteoglycan. J. Cell Biol.94 (1982) 574–585.CrossRefPubMedGoogle Scholar
  63. 63.
    Lander, A. D., Fuji, D. K., and Reichardt, L. F., Purification of a factor that promotes neurite outgrowth: isolation of laminin and associated molecules. J. Cell Biol.101 (1985) 898–913.CrossRefPubMedGoogle Scholar
  64. 64.
    Laurie, G. W., Bing, J. T., Kleinmann, H. K., Hassell, J. R., Aumailley, M., Martin, G. R., and Feldmann, J. R., Localization of binding sites for laminin, heparan sulfate proteoglycan and fibronectin on basement membrane (type IV) collagen. J. molec. Biol.189 (1986) 205–216.CrossRefPubMedGoogle Scholar
  65. 65.
    Laurie, G. W., Inoue, S., Bing, J. T., and Hassell, J. R., Visualization of the large heparan sulfate proteoglycan from basement membrane. Am. J. Anat.181 (1988) 320–326.CrossRefPubMedGoogle Scholar
  66. 66.
    Ledbetter, S. R., Copeland, E. J., Noonan, D., Vogeli, G., and Hassell, J. R., Altered steady-state in mRNA levels of basement membrane proteins in diabetic mouse kidneys and thromboxane synthase inhibition. Diabetes39 (1990) 196–203.PubMedGoogle Scholar
  67. 67.
    Ledbetter, S. R., Fisher, L. W., and Hassell, J. R., Domain structure of the basement membrane heparan sulfate proteoglycan. Biochemistry26 (1987) 988–995.CrossRefPubMedGoogle Scholar
  68. 68.
    Ledbetter, S. R., Tyree, B., Hassell, J. R., and Horigan, E. A., Identification of the precursor protein to basement heparan sulfate proteoglycans. J. biol. Chem.260 (1985) 8106–8113.PubMedGoogle Scholar
  69. 69.
    Lindblom, A., Carlstedt, I., and Fransson, L.-A., Identification of core proteins in proteoglycans synthesized by vascular endothelial cells. Biochem. J.261 (1989) 145–153.PubMedGoogle Scholar
  70. 70.
    Lortat-Jacob, H., Kleinman, H. K., and Grimaud, J.-A., High-affinity binding of interferon-γ to a basement membrane complex (matrigel). J. clin. Invest.87 (1991) 878–883.PubMedGoogle Scholar
  71. 71.
    McCarthy, K. J., Accavitti, M. A., and Couchman, J. R., Immunological characterization of a basement-membrane specific chondroitin sulfate proteoglycan. J. Cell Biol.109 (1989) 3187–3198.CrossRefPubMedGoogle Scholar
  72. 72.
    McCarthy, K. J., and Couchman, J. R., Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues. J. Histochem. Cytochem.38 (1990) 1479–1486.PubMedGoogle Scholar
  73. 73.
    Mehta, H., Orphe, C., Todd, M. S., Cornbrooks, C. J., and Carey, D. J., Synthesis by Schwann cells of basal lamina and membrane-associated heparan sulfate proteoglycans. J. Cell Biol.101 (1985) 660–666.CrossRefPubMedGoogle Scholar
  74. 74.
    Mohan, P. S., and Spiro, R. G., Characterization of heparan sulfate proteoglycan from calf lens capsule and proteoglycans synthesized by cultured lens epithelial cells. Comparison with other basement membrane proteoglycans. J. biol. Chem.266 (1991) 8567–8575.PubMedGoogle Scholar
  75. 75.
    Murdoch, A. D., Dodge, G. R., Cohen, I., Tuan, R. S., and Iozzo, R. V., Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/Perlecan). A chimeric molecule with multiple domains homologous to the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J. biol. Chem.267 (1992) 8544–8557.PubMedGoogle Scholar
  76. 76.
    Noonan, D. M., Fulle, A., Valente, P., Cai, S., Horigan, E., Sasaki, M., Yamada, Y., and Hassell, J. R., The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, LDL-receptor and N-CAM. J. biol. Chem.266 (1991) 22939–22947.PubMedGoogle Scholar
  77. 77.
    Noonan, D. M., Horigan, E., Ledbetter, S., Vogeli, G., Sasaki, M., Yamada, Y., and Hassell, J. R., Identification of cDNA clones encoding different domains of the basement membrane heparan sulfate proteoglycan. J. biol. Chem.263 (1988) 16379–16387.PubMedGoogle Scholar
  78. 78.
    Olgemöller, B., Schleicher, E., Nerlich, A., Wagner, E.-M., and Gerbitz, K. D., Isolation, characterization and immunological determination of basement membrane-associated heparan sulfate proteoglycan. Biol. Chem. Hoppe-Seyler370 (1989) 1321–1329.PubMedGoogle Scholar
  79. 79.
    Olgemöller, B., Schleicher, E. D., Schwaabe, S., Guretzki, H.-J., and Gerbitz, K. D., High concentrations of low density lipoprotein decrease basement membrane-associated heparan sulfate proteoglycan in cultured endothelial cells. FEBS Lett.264 (1990) 37–39.CrossRefPubMedGoogle Scholar
  80. 80.
    Olgemöller, B., Schwaabe, S., Gerbitz, K. D., and Schleicher, E. D., Elevated glucose decreases the content of a basement membrane associated heparan sulphate proteoglycan in proliferating cultured porcine mesangial cells. Diabetologia35 (1992) 183–186.CrossRefPubMedGoogle Scholar
  81. 81.
    Parthasarathy, N., and Spiro, R. G., Characterization of the glycosaminoglycan component of the renal glomerular basement membrane and its relationship to the peptide portion. J. biol. Chem.256 (1981) 507–513.PubMedGoogle Scholar
  82. 82.
    Paulsson, M., Basement membrane proteins: structure, assembly and cellular interactions. Crit. Rev. Biochem. molec. Biol.27 (1992) 93–127.Google Scholar
  83. 83.
    Paulsson, M., Dziadek, M., Suchanek, C., Huttner, W. B., and Timpl, R., Nature of sulfated macromolecules in mouse Reicherts membrane. Evidence for tyrosine-O-sulfate in basement membrane proteins. Biochem. J.231 (1985) 571–579.PubMedGoogle Scholar
  84. 84.
    Paulsson, M., Yurchenco, P. D., Ruben, G. C., Engel, J., and Timpl, R., Structure of low density heparan sulfate proteoglycan isolated from a mouse tumor basement membrane. J. molec Biol.197 (1987) 297–313.CrossRefPubMedGoogle Scholar
  85. 85.
    Pejler, G., Bäckström, G., Lindahl, U., Paulsson, M., Dziadek, M., Fujiwara, S., and Timpl, R., Structure and affinity for antithrombin of heparan sulfate chains derived from basement membrane proteoglycans. J. biol. Chem.262 (1987) 5036–5043.PubMedGoogle Scholar
  86. 86.
    Pejler, G., and David, G., Basement membrane heparan sulphate with high affinity for antithrombin synthesized by normal and transformed mouse mammary epithelial cells. Biochem. J.248 (1987) 69–77.PubMedGoogle Scholar
  87. 87.
    Rapraeger, A. C., Krufka, A., and Olwin, B. B., Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science252 (1991) 1705–1708.PubMedGoogle Scholar
  88. 88.
    Raulais, D., Lagente-Chevallier, O., Guettet, C., Duprez, D., Courtois, Y., and Vigny, M., A new heparin binding protein regulated by retinoic acid from chick embryo. Biochem. biophys. Res. Commun.174 (1991) 708–715.CrossRefPubMedGoogle Scholar
  89. 89.
    Rifkin, D. B., and Moscatelli, D., Recent developments in the cell biology of basic fibroblast growth factor. J. Cell Biol.109 (1989) 1–6.CrossRefPubMedGoogle Scholar
  90. 90.
    Ruoslahti, E., and Yamaguchi, Y., Proteoglycans as modulators of growth factor activities. Cell64 (1991) 867–869.CrossRefPubMedGoogle Scholar
  91. 91.
    Saksela, O., Moscatelli, D., Sommer, A., and Rifkin, D. B., Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from a proteolytic degradation. J. Cell Biol.107 (1988) 743–751.CrossRefPubMedGoogle Scholar
  92. 92.
    Saksela, O., and Rifkin, D. B., Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J. Cell Biol.110 (1990) 767–775.CrossRefPubMedGoogle Scholar
  93. 93.
    Saku, T., and Furthmayr, H., Characterization of the major heparan sulfate proteoglycan secreted by bovine aortic endothelial cells in culture. Homology to the large molecular weight molecule of basement membranes. J. biol. Chem.264 (1989) 3514–3523.PubMedGoogle Scholar
  94. 94.
    Schittny, J. C., Timpl, R., and Engel, J., High resolution immunoelectron microscopic localization of functional domains of laminin, nidogen, and heparan sulfate proteoglycan in epithelial basement membrane of mouse cornea reveals different topological orientations. J. Cell Biol.107 (1988) 1599–1610.CrossRefPubMedGoogle Scholar
  95. 95.
    Schleicher, E. D., Wagner, E.-M., Olgemöller, B., Nerlich, A. G., and Gerbitz, K. D., Characterization and localization of basement membrane-associated heparan sulfate proteoglycan in human tissues. Lab. Invest.61 (1989) 323–332.PubMedGoogle Scholar
  96. 96.
    Simionescu, M., Simionescu, N., and Palade, G. E., Partial chemical characterization of the anionic sites in the basal lamina of fenestrated capillaries. Microvasc. Res.28 (1984) 352–367.CrossRefPubMedGoogle Scholar
  97. 97.
    Simon-Assmann, P., Bouziges, F., Vigny, M., and Kedlinger, M., Origin and deposition of basement membrane heparan sulfate proteoglycan in the developing intestine. J. Cell Biol.100 (1989) 1837–1848.CrossRefGoogle Scholar
  98. 98.
    Snow, A. D., Mar, H., Nochlin, D., Sekiguchi, R. T., Kimata, K., Koike, Y., and Wight, T. N., Early accumulation of heparan sulfate in neurons and in the β-amyloid protein-containing lesions of Alzheimer's disease and Down's syndrome. Am. J. Path.137 (1990) 1253–1270.PubMedGoogle Scholar
  99. 99.
    Soroka, C. J., and Farquhar, M. G., Characterization of a novel heparan sulfate proteoglycan found in the extracellular matrix of liver sinusoids and basement membranes. J. Cell Biol.113 (1991) 1231–1241.CrossRefPubMedGoogle Scholar
  100. 100.
    Stow, J. L., and Farquhar, M. G., Distinctive populations of basement membrane and cell membrane heparan sulfate proteoglycans are produced by cultured cell lines. J. Cell Biol.105 (1987) 529–539.CrossRefPubMedGoogle Scholar
  101. 101.
    Stow, J. L., Soroka, C. J., McKay, K., Striker, G., and Farquhar, M. G., Basement membrane heparan sulfate proteoglycan is the main proteoglycan synthesized by glomerular epithelial cells in culture. Am J. Path.135 (1989) 637–646.PubMedGoogle Scholar
  102. 102.
    Sugahara, K., Okumura, Y., and Yamashima, I., The Engelbreth-Holm-Swarm mouse tumor produces undersulfated heparan sulfate and oversulfated galactosaminoglycans. Biochem. biophys. Res. Commun.162 (1989) 189–197.CrossRefPubMedGoogle Scholar
  103. 103.
    Timpl, R., Structure and biological activity of basement membrane proteins. Eur. J. Biochem.180 (1989) 487–502.CrossRefPubMedGoogle Scholar
  104. 104.
    Timpl, R., and Dziadek, M., Structure, development and molecular pathology of basement membranes. Int. Rev. exp. Path.29 (1986) 1–112.PubMedGoogle Scholar
  105. 105.
    Trescony, P. V., Oegema, T. R., Farnam, B. J., and Deloria, L. B., Analysis of heparan sulfate from the Engelbreth-Holm-Swarm (EHS) tumor. Connect. Tissue Res.19 (1989) 219–242.PubMedGoogle Scholar
  106. 106.
    Tyree, B., Horigan, E. A., Klippenstein, D. L., and Hassell, J. R., Heterogeneity of heparan sulfate proteoglycans synthesized by PYS-2 cells. Archs Biochem. Biophys.231 (1984) 328–335.CrossRefGoogle Scholar
  107. 107.
    Urios, P., Duprez, D., LeCaer, J. P., Courtois, Y., Vigny, M., and Laurent, M., Molecular cloning of RI-HB, a heparin binding protein regulated by retinoic acid. Biochem. biophys. Res. Commun.175 (1991) 617–624.CrossRefPubMedGoogle Scholar
  108. 108.
    van den Born, J., van den Heuvel, L. P. W. J., Bakker, M. A. H., Veerkamp, J. H., Assmann, K. J. M., and Berden, J. H. M., A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. Kidney Int.41 (1992) 115–123.PubMedGoogle Scholar
  109. 109.
    van den Heuvel, L. P. W. J., van den Born, J., van de Velden, T. J. A. M., Veerkamp, J. H., Monnens, L. A. H., Schroder, C. H., and Berden, J. H. M., Isolation and partial characterization of heparan sulphate proteoglycan from the human glomerular basement membrane. Biochem. J.264 (1989) 457–465.PubMedGoogle Scholar
  110. 110.
    Vlodavsky, I., Bar-Shavit, R., Korner, G., and Fuks, Z., Extracellular matrix-bound growth factors, enzymes and plasma proteins, in: Molecular and Cellular Aspects of Basement Membranes. pp. 327–343. Eds D. H. Rohrbach and R. Timpl. Academic Press, Orlando 1993.Google Scholar
  111. 111.
    Vlodavsky, I., Folkman, J., Sullivan, R., Fridman, R., Ishai-Michaeli, R., Sasse, J., and Klagsbrun, M., Endothelial cellderived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. natl Acad. Sci. USA84 (1987) 2292–2296.PubMedGoogle Scholar
  112. 112.
    Vlodavsky, I., Fuks, Z., Ishai-Michaeli, R., Bashkin, P., Levi, E., Korner, G., Bar-Shavit, R., and Klagsbrun, M., Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. J. cell. Biochem.45 (1991) 167–176.CrossRefPubMedGoogle Scholar
  113. 113.
    Williams, A. F., and Barday, A. N., The immunoglobulin superfamily: domains for cell surface recognition. A. Rev. Immun.6 (1988) 381–405.Google Scholar
  114. 114.
    Wewer, U. M., Albrechtsen, R., and Hassell, J. R., Heparan sulfate proteoglycans made by different basement-membrane-producing tumors have immunological and structural similarities. Differentiation30 (1985) 61–67.PubMedGoogle Scholar
  115. 115.
    Woodley, D. T., Rao, C. N., Hassell, J. R., Liotta, L. A., Martin, G. R., and Kleinman, H. K., Interactions of basement membrane components. Biochim. biophys. Acta761 (1983) 278–283.PubMedGoogle Scholar
  116. 116.
    Yamamoto, T., Davis, G. G., Brown, M. S., Schneider, W. J., Casey, M. L., Goldstein, J. L., and Russell, D. W., The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell39 (1984) 27–38.PubMedGoogle Scholar
  117. 117.
    Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M., Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell64 (1991) 841–848.CrossRefPubMedGoogle Scholar
  118. 118.
    Yurchenco, P. D., Cheng, Y.-S., and Ruben, G. C., Selfassembly of a high molecular weight basement membrane heparan sulfate proteoglycan into dimers and oligomers. J. biol. Chem.262 (1987) 17668–17676.PubMedGoogle Scholar
  119. 119.
    Yurchenco, P. D., and Schittny, J. C., Molecular architecture of basement membranes. FASEB J.4 (1990) 1577–1590.PubMedGoogle Scholar
  120. 120.
    Zimmermann, D. R., and Ruoslahti, E., Multiple domains of the large fibroblast proteoglycan versican. EMBO J.8 (1989) 2975–2981.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • R. Timpl
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsriedGermany

Personalised recommendations