Experientia

, Volume 49, Issue 9, pp 802–805 | Cite as

Non-viraemic transmission of tick-borne encephalitis virus: a mechanism for arbovirus survival in nature

  • M. Labuda
  • P. A. Nuttall
  • O. Kožuch
  • E. Elečková
  • T. Williams
  • E. Žuffová
  • A. Sabó
Research Articles

Abstract

The vectors of arthropod-borne viruses (arboviruses) become infected by feeding on the viraemic blood of an infected animal. This theory is based on transmission studies involving artificial infection of vertebrate hosts by syringe inoculation. To reproduce natural conditions of virus transmission, infected and uninfected vectors (ticks) of tick-borne encephalitis virus, the most important arbovirus in Europe, were allowed to feed together on uninfected wild vertebrate hosts. The greatest numbers of infected ticks were obtained from susceptible host species that had undetectable or very low levels of viraemia. The results suggest that ‘nonviremic transmission’ is an important mechanism for the survival of certain arboviruses in nature.

Key words

Arbovirus transmission tick-borne encephalitis virus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.
    Karabatsos, N., in: International Catalogue of Arboviruses Including Certain Other Viruses of Vertebrates. Publication of the American Society of Tropical Medicine and Hygiene, San Antonio, Texas, 1985.Google Scholar
  2. 3.
    World Health Organization, Arthropod-borne and rodentborne viral diseases. WHO Technical Report, No. 719, 1985.Google Scholar
  3. 4.
    Jones, L. D., Davies, C. R., Steele, G. M., and Nuttall, P. A., Science237 (1987) 775.PubMedGoogle Scholar
  4. 5.
    Labuda, M., Jones, L. D., Williams, T., Danielova, V., and Nuttall, P. A., J. med. Ent.30 (1993) 295.Google Scholar
  5. 6.
    World Health Organization, Tick-borne encephalitis and haemorrhagic fever with renal syndrome in Europe WHO EURO Reports and Studies 104, 1986.Google Scholar
  6. 7.
    Cerny, V., Folia parasit.22 (1976) 271.Google Scholar
  7. 8.
    Radda, A., Hofmann, H., and Pretzmann, G., Acta virol. Prague13 (1969) 74.Google Scholar
  8. 9.
    Grešiková, M., and Calisher, C. H., in: The Arboviruses: Epidemiology and Ecology, vol IV, p. 177. Ed. T. P. Monath. CRC Press, Inc., Boca Raton, Florida 1988.Google Scholar
  9. 10.
    Málková, D., Roz. Česk. Akad. Věd.79 (1969) 1.Google Scholar
  10. 11.
    Aitkin, M., Anderson, D., Francis, B., and Hinde, J., Statistical Modelling in GLIM. Oxford Scientific Publications. Oxford 1989.Google Scholar
  11. 12.
    Kaufman, W. R., Parasit. Today5 (1989) 47.CrossRefGoogle Scholar
  12. 13.
    Randolph, S. E., Parasitology79 (1979) 141, and S. E. Randolph, pers. com.PubMedGoogle Scholar
  13. 14.
    Titus, R. G., and Ribeiro, J. M. C., Science239 (1988) 1306.PubMedGoogle Scholar
  14. 15.
    Samuelson, J., Lerner, E., Tesh, R., and Titus, R., J. exp. Med.173 (1991) 49.CrossRefPubMedGoogle Scholar
  15. 16.
    Titus, R. G., and Ribeiro, J. M. C., Parasit. Today6 (1990) 157.CrossRefGoogle Scholar
  16. 17.
    Jones, L. D., Kaufman, W. R., and Nuttall, P. A., Experientia48 (1992) 779.PubMedGoogle Scholar
  17. 18.
    Labuda, M., Jones, L. D., Williams, T., and Nuttall, P. A., Med. vet. Ent.7 (1993) 193.Google Scholar
  18. 19.
    Nuttall, P. A., and Jones, L. D., in: Modern Acarology vol. 2, p. 3. Eds F. Dusbábek and V. Bukva. SPB Academic Publishing bv, The Hague 1991.Google Scholar
  19. 20.
    Jones, L. D., Hodgson, E., Williams, T., Higgs, S., and Nuttall, P. A., Med. vet. Ent.6 (1992) 261.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1993

Authors and Affiliations

  • M. Labuda
    • 1
  • P. A. Nuttall
    • 2
  • O. Kožuch
    • 1
  • E. Elečková
    • 1
  • T. Williams
    • 2
  • E. Žuffová
    • 1
  • A. Sabó
    • 1
  1. 1.Institute of VirologySlovak Academy of SciencesBratislavaSlovakia
  2. 2.NERC Institute of Virology and Environmental MicrobiologyOxfordUK

Personalised recommendations