, Volume 48, Issue 2, pp 130–151 | Cite as

Theearly andlate processing of lysosomal enzymes: Proteolysis and compartmentation

  • A. Hasilik
Multi-Author Review Proteases as Biological Regulators


Lysosomal enzymes are subjected to a number of modifications including carbohydrate restructuring and proteolytic maturation. Some of these reactions support lysosomal targeting, others are necessary for activation or keeping the enzyme inactive before being segregated, while still others may be adventitious. The non-segregated fraction of the enzyme is secreted and can be isolated from the medium. It is considered that the secreted lysosomal enzymes fulfill certain physiological and pathophysiological roles. By comparing the secreted and the intracellular enzymes it is possible to distinguish between the reactions that occur before and after the segregation. In this review the reactions that may influence the segregation are referred to as the early processing and those characteristic for the enzymes isolated from lysosomal compartments as the late processing. The early processing is characterized mainly by modifications of carbohydrate side chains. In the late processing, proteolytic fragmentation represents the most conspicuous changes. The review focuses on the compartmentation of the reactions and the proteolytic fragmentation of lysosomal enzyme precursors. While a plethora of proteolytic reactions are involved, our knowledge of the proteinases responsible for the particular maturation reactions remains very limited. The review points also to work with cells from patients affected with lysosomal storage disorders, which contributed to our understanding of the lysosomal apparatus.

Key words

Lysosomes lysosomal enzymes maturation proteinases proteolysis secretion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, D., Muir, H., Winchester, B., and Olsen, I., Lymphocytes transfer only the lysosomal form of α-mannosidase during cell-to-cell contract. Exp. Cell Res.175 (1988) 158–168.PubMedGoogle Scholar
  2. 2.
    Achord, D., Brot, F., Gonzalez-Noriega, A., Sly, W., and Stahl, P., Human β-glucuronidase. II. Fate of infused human placental β-glucuronidase in the rat. Pediat. Res.11 (1977) 816–822.PubMedGoogle Scholar
  3. 3.
    Achord, D. T., Brot, F. E., Bell, C. E., and Sly, W. S., Human β-glucuronidase: in vivo clearance and in vitro uptake by a glycoprotein recognition system on reticuloendothelial cells. Cell15 (1978) 269–278.CrossRefPubMedGoogle Scholar
  4. 4.
    Achstetter, T., Franzusoff, A., Field, C., and Schekman, R., SEC7 encodes an unusual, high molecular weight protein required for membrane traffic from the yeast Golgi apparatus. J. biol. Chem.263 (1988) 11711–11717.PubMedGoogle Scholar
  5. 5.
    Aerts, J. M. F. G., Schram, A. W., Strijland, A., van Weely, S., Jonsson, L. M. V., Tager, J. M., Sorrell, S. H., Ginns, E. I., Barranger, J. A., and Murray, G. J., Glucocerebrosidase, a lysosomal enzyme that does not undergo oligosaccharide phosphorylation. Biochim. biophys. Acta964 (1988) 303–308.PubMedGoogle Scholar
  6. 6.
    Akin, D. T., and Kinkade, J. M. Jr, Processing of a newly identified intermediate of human myeloperoxidase in isolated granules occurs at neutral pH. J. biol. Chem.261 (1986) 8370–8375.PubMedGoogle Scholar
  7. 7.
    Akin, D. T., and Kinkade, J. M. Jr, Evidence for the involvement of an acidic compartment in the processing of myeloperoxidase in human promyelocytic leukemia HL-60 cells. Archs Biochem. Biophys.255 (1987) 428–436.CrossRefGoogle Scholar
  8. 8.
    Ammerer, G., Hunter, C. P., Rothman, J. H., Saari, G. C., Valls, L. A., and Stevens, T. H., PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors. Molec. cell. Biol.6 (1986) 2490–2499.PubMedGoogle Scholar
  9. 9.
    Argade, S. P., Hopfer, R. L., Strang, A-M., van Halbeek, H., and Alhadeff, J. A., Structural studies on the carbohydrate moieties of human liver α-L-fucosidase. Archs Biochem. Biophys.266 (1988) 227–247.CrossRefGoogle Scholar
  10. 10.
    Ashwell, G., and Morell, H. G., The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol.41 (1974) 99–128.PubMedGoogle Scholar
  11. 11.
    Assfalg-Machleidt, I., Jochum, M., Klaubert, W., Inthorn, D., and Machleidt, W., Enzymatically active cathepsin B dissociating from its inhibitor complexes is elevated in blood plasma of patients with septic shock and some malignant tumors. Biol. Chem. Hoppe-Seyler369 (1988) suppl. 263–269.PubMedGoogle Scholar
  12. 12.
    Astrin, K. H., and Desnick, R. J., Chromosomal localization of the structural genes encoding the human lysosomal hydrolases and their activator and stabilizer proteins, in: Molecular Basis of Lysosomal Storage Disorders, pp. 325–363. Eds J. A. Barranger and R. O. Brady. Academic Press, Inc., Orlando 1984.Google Scholar
  13. 13.
    Bainton, D. F., The discovery of lysosomes. J. Cell Biol.91 (1981) 66s-76s.CrossRefPubMedGoogle Scholar
  14. 14.
    Bainton, D. F., and Farquhar, M. G., Origin of granules in polymorphonuclear leukocytes. J. Cell Biol.28 (1966) 277–301.PubMedGoogle Scholar
  15. 15.
    Bainton, D. F., and Farquhar, M. G., Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. J. Cell Biol.39 (1968) 286–298.CrossRefPubMedGoogle Scholar
  16. 16.
    Bainton, D. F., Ullyot, J. L., and Farquhar, M. G., The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J. exp. Med.134 (1971) 907–934.CrossRefPubMedGoogle Scholar
  17. 17.
    Ballabio, A., Parenti, G., Carrozzo, R., Sebastio, G., Andria, G., Buckle, V., Fraser, N., Craig, I., Rocchi, M., Romeo, G., Jobsis, A. C., and Persico, M. G., Isolation and characterization of a steroid sulfatase cDNA clone: genomic deletions in patients with X-chromosome-linked ichthyosis. Proc. natl Acad. Sci. USA84 (1987) 4519–4523.PubMedGoogle Scholar
  18. 18.
    Baranski, T. J., Faust, P. L., and Kornfeld, S., Generation of a lysosomal enzyme targeting signal in the secretory protein pepsinogen. Cell63 (1990) 281–291.CrossRefPubMedGoogle Scholar
  19. 19.
    Barrett, A. J., Human cathepsin D. Adv. exp. Med. Biol.95 (1979) 291–300.Google Scholar
  20. 20.
    Barrett, A. J., Buttle, D. J., Mason, R. W., Lysosomal Cysteine Proteinases. ISI Atlas of Sci. Biochem. (1988) 256–260.Google Scholar
  21. 21.
    Barriocanal, J. G., Bonifacino, J. S., Yuan, L., and Sandoval, I. V., Biosynthesis, glycosylation, movement through the Golgi system, and transport to lysosomes by an N-linked carbohydrate-independent mechanism of three lysosomal integral membrane proteins. J. biol. Chem.261 (1986) 16755–16763.PubMedGoogle Scholar
  22. 22.
    Barton, K. A., Thompson, J. F., Madison, J. T., Rosenthal, R., Jarvis, N. P., and Beachy, R. N., The biosynthesis and processing of high molecular weight precursors of soybean glycinin subunits. J. biol. Chem.257 (1982) 6089–6095.PubMedGoogle Scholar
  23. 23.
    Bielicki, J., Freeman, C., Clements, P. R., and Hopwood, J. J., Human liver iduronate-2-sulphatase. Biochem. J.271 (1990) 75–86.PubMedGoogle Scholar
  24. 24.
    Bishop, D. F., Calhoun, D. H., Bernstein, H. S., Hantzopoulos, P., Quinn, M., and Desnick, R. J., Human α-galactosidase A: Nucleotide sequence of a cDNA clone encoding the mature enzyme. Proc. natl Acad. Sci. USA83 (1986) 4859–4863.PubMedGoogle Scholar
  25. 25.
    Blum, J. S., Diaz, R., Diment, S., Fiani, M., Mayorga, L., Rodman, J. S., and Stahl, P. D., Proteolytic processing in endosomal vesicles. Cold Spring Harbor Symp. quant. Biol.54 (1989) 287–292.Google Scholar
  26. 26.
    Bonifas, J. M., Morley, B. J., Oakey, R. E., Kan, Y. W., and Epstein, Jr, E. H., Cloning of a cDNA for steroid sulfatase: frequent occurrence of gene deletions in patients with recessive X chromosome-linked ichthyosis. Proc. natl Acad. Sci. USA84 (1987) 9248–9251.PubMedGoogle Scholar
  27. 27.
    Braulke, T., Hasilik, A., and von Figura, K., Low temperature blocks transport and sorting of cathepsin D in fibroblasts. Biol. Chem. Hoppe-Seyler369 (1988) 441–449.PubMedGoogle Scholar
  28. 28.
    Braulke, T., Hille, A., Huttner, W. B., Hasilik, A., and von Figura, K., Sulfated oligosaccharides in human lysosomal enzymes. Biochem. biophys. Res. Commun.143 (1987) 178–185.PubMedGoogle Scholar
  29. 29.
    Braun, M., Waheed, A., and von Figura, K., Lysosomal acid phosphatase is transported to lysosomes via the cell surface. EMBO J.8 (1989) 3633–3640.PubMedGoogle Scholar
  30. 30.
    Brown, J. A., Jahreis, G. P., and Swank, R. T., The synthesis and processing of β-glucuronidase in normal and egasyn deficient mouse kidney. Biochem. biophys. Res. Commun.99 (1981) 691–699.CrossRefPubMedGoogle Scholar
  31. 31.
    Brown, J. A., and Swank, R. T., Subcellular redistribution of newly synthesized macrophage lysosomal enzymes. J. biol. Chem.258 (1983) 15323–15328.PubMedGoogle Scholar
  32. 32.
    Burg, J., Banerjee, A., and Sandhoff, K., Molecular forms of GM2-activator protein. Biol. Chem. Hoppe-Seyler366 (1985) 887–891.PubMedGoogle Scholar
  33. 33.
    Burkhardt, J. K., Hester, S., Lapham, C. K., and Argon, Y., The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments. J. Cell Biol.111 (1990) 2327–2340.CrossRefPubMedGoogle Scholar
  34. 34.
    Bush, J. M., and Cardelli, J. A., Processing, transport, and secretion of the lysosomal enzyme acid phosphatase in Dictyostelium discoideum. J. biol. Chem.264 (1989) 7630–7636.PubMedGoogle Scholar
  35. 35.
    Byrd, J. C., and Touster, O., Isolation and partial characterization of the oligosaccharide moieties of rat preputial β-glucuronidase. Biochim. biophys. Acta677 (1981) 69–78.PubMedGoogle Scholar
  36. 36.
    Cardelli, J. A., Bush, J. M., Ebert, D., and Freeze, H. H., Sulfated N-linked oligosaccharides affect secretion but are not essential for the transport, proteolytic processing, and sorting of lysosomal enzymes in Dictyostelium discoideum. J. biol. Chem.265 (1990) 8847–8853.PubMedGoogle Scholar
  37. 37.
    Cardelli, J. A., Golumbeski, G. S., and Dimond, R. L., Lysosomal enzymes in Dictyostelium discoideum are transported to lysosomes at distinctly different rates. J. Cell Biol.102 (1986) 1264–1270.CrossRefPubMedGoogle Scholar
  38. 38.
    Carlsson, S. R., Roth, J., Piller, F., and Fukuda, M., Isolation and characterization of human lysosomal membrane glycoproteins, hlamp-1 and h-lamp-2. J. biol. Chem.263 (1988) 18911–18919.PubMedGoogle Scholar
  39. 39.
    Carver, J.PP., and Brisson, J.-R., The three-dimensional structure of N-linked oligosaccharides, in: Biology of Carbohydrates, vol. 2, pp. 289–331. Eds V. Ginsburg and P. W. Robbins. John Wiley & Sons, New York 1984.Google Scholar
  40. 40.
    Chan, S. J., San Segundo, B., McCormick, M. B., and Steiner, D. F., Nucleotide and predicted amino acid sequences of cloned human and mouse preprocathepsin B cDNAs. Proc. natl Acad. Sci. USA83 (1986) 7721–7725.PubMedGoogle Scholar
  41. 41.
    Ching, I-L., and Dice, J. F., Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J. biol. Chem.263 (1988) 6797–6805.PubMedGoogle Scholar
  42. 42.
    Chiang, H-L., and Schekman, R., Regulated import and degradation of a cytosolic protein in the yeast vacuole. Nature350 (1991) 313–318.CrossRefPubMedGoogle Scholar
  43. 43.
    Chiang, H-L., Terlecky, S. R., Plant, C. P., and Dice, J. F., A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science246 (1989) 382–385.PubMedGoogle Scholar
  44. 44.
    Chrispeels, M. J., Higgins, T. J. V., Craig, S., and Spencer, D., Role of the endoplasmic reticulum in the synthesis of reserve proteins and the kinetics of their transport to protein bodies in developing pea cotyledons. J. Cell Biol.93 (1982) 5–14.CrossRefPubMedGoogle Scholar
  45. 45.
    Chrispeels, M. J., Higgins, T. J. V., and Spencer, D., Assembly of storage protein oligomers in the endoplasmic reticulum and processing of the polypeptides in the protein bodies of developing pea cotyledons. J. Cell Biol.93 (1982) 306–313.PubMedGoogle Scholar
  46. 46.
    Cohn, Z. A., and Fedorko, M. E., The formation and fate of lysomes, in: Lysosomes in Biology and Pathology, vol. 1, pp. 43–63. Eds J. T. Dingle and H. B. Fell, North Holland Publishing Company, Amsterdam 1969.Google Scholar
  47. 47.
    Collard, M. W., Sylvester, S. R., Tsurula, J. K., and Griswold, M. D., Biosynthesis and molecular cloning of sulfated glycoprotein 1 secreted by rat sertoli cells: sequence similarity with the 70-kilodalton precursor to sulfatide/GM1 activator. Biochemistry27 (1988) 4557–4564.CrossRefPubMedGoogle Scholar
  48. 48.
    Conner, G. E., Isolation of procathepsin D from nature cathepsin D by pepstatin affinity chromatography. Biochem. J.263 (1989) 601–604.PubMedGoogle Scholar
  49. 49.
    Conner, G. E., The role of the cathepsin D propeptide in folding and in sorting to the lysosome. (1992) in press,Google Scholar
  50. 50.
    Conner, G. E., Udey, J. A., Pinto, C., and Sola, J., Nonhuman cells correctly sort and process the human lysosomal enzyme cathepsin D. Biochemistry28 (1989) 3530–3533.CrossRefPubMedGoogle Scholar
  51. 51.
    Creek, L. E., and Sly, W. S., The role of the phosphomannosyl receptor in the transport of acid hydrolases to lysosomes, in: Lysosomes in Biology and Pathology, pp. 63–82. Eds J. T. Dingle, R. T. Dean and W. Sly, Elsevier Sci. Publ., Amsterdam 1984.Google Scholar
  52. 52.
    Croy, R. R. D., Lycett, G. W., Gatehouse, J. A., Yarwood, J. N., and Boulter, D., Cloning and analysis of cDNAs encoding plant storage protein precursors. Nature295 (1982) 76–79.CrossRefGoogle Scholar
  53. 53.
    Dahms, M. M., Lobel, P., and Kornfeld, S., Mannose 6-phosphate receptors and lysosomal enzyme targeting. J. biol. Chem.264 (1989) 12115–12118.PubMedGoogle Scholar
  54. 54.
    Davidson, H. W. and Watts, C., Epitope-directed processing of specific antigen by B lymphocytes. J. Cell Biol.109 (1989) 85–92.CrossRefPubMedGoogle Scholar
  55. 55.
    d'Azzo, A., Hoogeveen, A., Reuser, A. J. J., Robinson, D., and Galjaard, H., Molecular defect in combined β-galactosidase and neuraminidase deficiency in man. Proc. natl Acad. Sci. USA79 (1982) 4535–4539.PubMedGoogle Scholar
  56. 56.
    d'Azzo, A., Proia, R. L., Kolodny, E. H., Kaback, M. M., and Neufeld, E. F., Faulty association of α- and β-subunits in some forms of β-hexosaminidase A deficiency. J. biol. Chem.259 (1984) 11070–11074.PubMedGoogle Scholar
  57. 57.
    de Duve, C., Lysosomes revisited. Eur. J. Biochem.137 (1983) 391–397.CrossRefPubMedGoogle Scholar
  58. 58.
    de Duve, C., Gianetto, R., Appelmans, F., Wattiaux, R., Enzymic content of the mitochondria fraction. Nature172 (1953) 1143–1144.PubMedGoogle Scholar
  59. 59.
    Deshaies, R. J., Kepes, F., and Bohni, P. C., Genetic dissection of the early stages of protein secretion in yeast. Trends Genet.5 (1989) 87–93.CrossRefPubMedGoogle Scholar
  60. 60.
    Dewji, N. N., Wenger, D. A., and O'Brien, J. S., Nucleotide sequence of cloned cDNA for human sphingolipid activator protein 1 precursor. Proc. natl Acad. Sci. USA84 (1987) 8652–8656.PubMedGoogle Scholar
  61. 61.
    Dice, J. F., Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends biochem. Sci.15 (1990) 305–309.CrossRefPubMedGoogle Scholar
  62. 62.
    DiCioccio, R. A., Darby, J. K., and Willems, P. J., Abnormal expression of alpha-L-fucosidase in lymphoid cell lines of fucosidosis patients. Biochem. Genet.27 (1989) 279–290.CrossRefPubMedGoogle Scholar
  63. 63.
    Diment, S., Leech, M. S., and Stahl, P. D., Cathepsin D is membrane-associated in macrophage endosomes. J. biol. Chem.263 (1988) 6901–6907.PubMedGoogle Scholar
  64. 64.
    Diment, S., and Stahl, P., Macrophage endosomes contain proteases which degrade endocytosed protein ligands. J. biol. Chem.260 (1985) 15311–15317.PubMedGoogle Scholar
  65. 65.
    Distel, B., Al, E. J. M., Tabak, H. F., and Jones, E. W., Synthesis and maturation of the yeast vacuolar enzymes carboxypeptidase Y and aminopeptidase I. Biochim. biophys. Acta741 (1983) 128–135.PubMedGoogle Scholar
  66. 66.
    Dlott, B., d'Azzo, A., Quon, D. V. K., and Neufeld, E. F., Two mutations produce intron insertion in mRNA and elongated β-subunit of human β-hexosaminidase. J. biol. Chem.265 (1990) 17921–17927.PubMedGoogle Scholar
  67. 67.
    Do, K-Y., Smith, D. F., and Cummings, R. D., Lamp-1 in CHO cells is a primary carrier of poly-N-acetyllactosamine chains and is bound preferentially by a mammalian S-type lectin. Biochem. biophys. Res. Commun.173 (1990) 1123–1128.CrossRefPubMedGoogle Scholar
  68. 68.
    Docherty, K., Carroll, R., and Steiner, D. F., Identification of a 31,500 molecular weight islet cell protease as cathepsin B. Proc. natl. Acad. Sci. USA80 (1983) 3245–3249.PubMedGoogle Scholar
  69. 69.
    Docherty, K., Hutton, J. C., and Steiner, D. F., Cathepsin B-related proteases in the insulin secretory granule. J. biol. Chem.259 (1984) 6041–6044.PubMedGoogle Scholar
  70. 70.
    Domoney, C., and Casey, R., Storage protein precursor polypeptides in cotyledons ofPisum sativum L. Eur. J. Biochem.139 (1984) 321–327.CrossRefPubMedGoogle Scholar
  71. 71.
    Dunn, W. A. Jr, Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J. Cell Biol.110 (1990) 1935–1945.CrossRefPubMedGoogle Scholar
  72. 72.
    Elliott, T., Townsend, A., and Cerundolo, V., Naturally processed peptides. Nature348 (1990) 195–196.CrossRefPubMedGoogle Scholar
  73. 73.
    Erickson, A. H., Biosynthesis of lysosomal endopeptidases. J. cell. Biochem.40 (1989) 31–41.CrossRefPubMedGoogle Scholar
  74. 74.
    Erickson, A. H., and Blobel, G., Early events in the biosynthesis of the lysosomal enzyme cathepsin D. J. biol. Chem.254 (1979) 11771–11774.PubMedGoogle Scholar
  75. 75.
    Erickson, A. H., and Blobel, G., Carboxy-terminal proteolytic processing during biosynthesis of the lysosomal enzymes β-glucuronidase and cathepsin D. Biochemistry22 (1983) 5201–5205.CrossRefPubMedGoogle Scholar
  76. 76.
    Erickson, A. H., Conner, G. E., and Blobel, G., Biosynthesis of a lysosomal enzyme. J. biol. Chem.256 (1981) 11224–11231.PubMedGoogle Scholar
  77. 77.
    Erickson, A. H., Ginns, E. I., and Barranger, G., Biosynthesis of β-glucocerebrosidase in human fibroblasts. Fedn Proc.44 (1985) 709a.Google Scholar
  78. 78.
    Erickson, A. H., Ginns, E. I., and Barranger, J. A., Biosynthesis of the lysosomal enzyme glucocerebrosidase. J. biol. Chem.260 (1985) 14319–14324.PubMedGoogle Scholar
  79. 79.
    Erickson, A. H., Walter, P., and Blobel, G., Translocation of a lysosomal enzyme across the microsomal membrane requires signal recognition particle. Biochem. biophys. Res. Commun.115 (1983) 275–280.CrossRefPubMedGoogle Scholar
  80. 80.
    Farquhar, M. G., and Palade, G. E., The Golgi apparatus (complex) (1954–1981)-from artifact to center stage. J. Cell Biol.91 (1981) 77s–103s.CrossRefPubMedGoogle Scholar
  81. 81.
    Faust, P. L., Kornfeld, S., and Chirgwin, J. M., Cloning and sequence analysis of cDNA for human cathepsin D. Proc. natl Acad. Sci. USA82 (1985) 4910–4914.PubMedGoogle Scholar
  82. 82.
    Febbraio, M., and Silverstein, R. L., Identification and characterization of lamp-1 as an activation-dependent platelet surface glycoprotein. J. biol. Chem.265 (1990) 18531–18537.PubMedGoogle Scholar
  83. 83.
    Felleisen, R., and Klinkert, M-Q., In vitro translation and processing of cathepsin B of Schistosoma mansoni. EMBO J.9 (1990) 371–377.PubMedGoogle Scholar
  84. 84.
    Fisher, K. I., and Aronson, N. N. Jr, Isolation and sequence analysis of a cDNA encoding rat liver α-L-fucosidase. Biochem. J.264 (1989) 695–701.PubMedGoogle Scholar
  85. 85.
    Foltmann, B., Structure and function of proparts in zymogens for aspartic proteinases. Biol. Chem. Hoppe-Seyler369 (1988) suppl. 311–314.PubMedGoogle Scholar
  86. 86.
    Fong, D., Calhoun, D. H., Hsieh, W-T., Lee, B., and Wells, R. D., Isolation of cDNA clone for the human lysosomal proteinase cathepsin B. Proc. natl Acad. Sci. USA83 (1986) 2909–2913.PubMedGoogle Scholar
  87. 87.
    Frisch, A., Baram, D., and Navon, R., Hexosaminidase A deficient adults: Presence of α chain precursor in cultured skin fibroblasts. Biochem. biophys. Res. Commun.119 (1984) 101–107.CrossRefPubMedGoogle Scholar
  88. 88.
    Frisch, A., and Neufeld, E. F., Limited proteolysis of the β-hexosaminidase precursor in a cell-free system. J. biol. Chem.256 (1981) 8242–8246.PubMedGoogle Scholar
  89. 89.
    Fuchs, R., and Gassen, H. G., Nucleotide sequence of human preprocathepsin H, a lysosomal cysteine proteinase. Nucl. Acids Res.17 (1989) 9471 only.PubMedGoogle Scholar
  90. 90.
    Fuchs, R., Machleidt, W., and Gassen, H. G., Molecular cloning and sequencing of a cDNA coding for mature human kidney cathepsin H. Biol. Chem. Hoppe-Seyler369 (1988) 469–475.PubMedGoogle Scholar
  91. 91.
    Fürst, W., Schubert, J., Machleidt, W., Meyer, H. E., and Sandhoff, K., The complete amino-acid sequences of human ganglioside GM2 activator protein and cerebroside sulfate activator protein. Eur. J. Biochem.192 (1990) 709–714.PubMedGoogle Scholar
  92. 92.
    Fürst, W., Machleidt, W., and Sandhoff, K., The precursor of sulfatide activator protein is processed to three different proteins. Biol. Chem. Hoppe-Seyler369 (1988) 317–328.PubMedGoogle Scholar
  93. 93.
    Fujibayashi, S., and Wenger, D. A., Synthesis and processiing of sphingolipid activator protein-2 (SAP-2) in cultured human fibroblasts. J. biol. Chem.261 (1986) 15339–15343.PubMedGoogle Scholar
  94. 94.
    Fukuda, M., Viitala, J., Matteson, J., and Carlsson, S. R., Cloning of cDNAs encoding human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. J. biol. Chem.263 (1988) 18920–18928.PubMedGoogle Scholar
  95. 95.
    Fukushima, H., de Wet, J. R., and O'Brien, J. S., Molecular cloning of a cDNA for human α-L-fucosidase. Proc. natl Acad. Sci. USA82 (1985) 1262–1265.PubMedGoogle Scholar
  96. 96.
    Furuno, K., Yano, S., Akasaki, K., Tanaka, Y., Yamaguchi, Y., Tsuji, H., Himeno, M., and Kato, R., Biochemical analysis of the movement of a major lysosomal membrane glycoprotein in the endocytic membrane system. J. Biochem. Tokyo106 (1989) 717–722.PubMedGoogle Scholar
  97. 97.
    Gabay, J. E., Heiple, J. M., Cohn, Z. Y., and Nathan, C. F., Subcellular location and properties of bactericidal factors from human neutrophils. J. exp. Med.164 (1986) 1407–1421.CrossRefPubMedGoogle Scholar
  98. 98.
    Gabel, C. A., and Kornfeld, S., Targeting of β-glucuronidase to lysosomes in mannose 6-phosphate receptor-deficient MOPC 315 cells. J. Cell Biol.99 (1984) 296–305.CrossRefPubMedGoogle Scholar
  99. 99.
    Gal, S., and Gottsman, M. M., The major excreted protein of transformed fibroblasts in an activable acid-protease. J. biol. Chem.261 (1986) 1760–1765.PubMedGoogle Scholar
  100. 100.
    Gal, S., Willingham, M. C., and Gottesman, M. M., Processing and lysosomal localization of a glycoprotein whose secretion is transformed stimulated. J. Cell Biol.100 (1985) 535–544.CrossRefPubMedGoogle Scholar
  101. 101.
    Galjart, N. J., Gillemans, N., Harris, A., van der Horst, G. T. J., Verheijen, F. W., Galjaard, H., and d'Azzo, A., Expression of cDNA encoding the human “protective protein” associated with lysosomal β-galactosidase and neuraminidase: homology to yeast proteases. Cell54 (1988) 755–764.CrossRefPubMedGoogle Scholar
  102. 102.
    Galjart, N. J., Gillemans, N., Meijer, D., and d'Azzo, A., Mouse “protective protein”. J. biol. Chem.265 (1990) 4678–4684.PubMedGoogle Scholar
  103. 103.
    Gatehouse, J. A., Croy, R. R. D., Morton, H., Tyler, M., and Boulter, D., Characterisation and subunit structures of the vicillin storage proteins of pea (Pisum sativum L.). Eur. J. Biochem.118 (1981) 627–633.PubMedGoogle Scholar
  104. 104.
    Gatehouse, J. A., Lycett, G. W., Croy, R. R. D., and Boulter, D., The post-translational proteolysis of the subunits of vicilin from pea (Pisum sativum L.). Biochem. J.207 (1982) 629–632.PubMedGoogle Scholar
  105. 105.
    Gierasch, L. M., Signal sequences, Biochemistry28 (1989) 923–930.PubMedGoogle Scholar
  106. 106.
    Gieselmann, V., Hasilik, A., and von Figura, K., Processing of human cathepsin D in lysosomes in vitro. J. biol. Chem.260 (1985) 3215–3220.PubMedGoogle Scholar
  107. 107.
    Gieselmann, V., Pohlmann, R., Hasilik, A., and von Figura, K., Biosynthesis and transport of cathepsin D in cultured human fibroblasts. J. Cell Biol.97 (1983) 1–5.CrossRefPubMedGoogle Scholar
  108. 108.
    Gieselmann, V., Polten, A., Kreysing, J., and von Figura, K., Arylsulfatase A pseudodeficiency: loss of a polyadenylylation signal and N-glycosylation site. Proc. natl Acad. Sci. USA86 (1989) 9436–9440.PubMedGoogle Scholar
  109. 109.
    Glauman, H., and Ballard, F. J., (Eds), Lysosomes: Their Role in Protein Breakdown, pp. 1–737. Academic Press, London 1987.Google Scholar
  110. 110.
    Goldberg, D., Gabel, C., and Kornfeld, S., Processing of lysosomal enzyme oligosaccharide units, in: Lysosomes in Biology and Pathology, pp. 45–62. Eds J. T. Dingle, R. T. Dean and W. Sly. Elsevier Sci. Publ. Amsterdam 1984.Google Scholar
  111. 111.
    Goldstein, J. L., and Brown, M. S., The low density lipoprotein pathway and its relation to atherosclerosis. A. Rev. Biochem.46 (1977) 897–930.CrossRefGoogle Scholar
  112. 112.
    Gonzalez-Noriega, A., Grubb, J. H., Talkad, V., and Sly, W. S., Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J. Cell Biol.85 (1980) 839–852.CrossRefPubMedGoogle Scholar
  113. 113.
    Gordon, P. B., and Seglen, P. O., Prelysosomal convergence of autophagic and endocytic pathways. Biochem. biophys. Res. Commun.151 (1988) 40–47.PubMedGoogle Scholar
  114. 114.
    Gottschalk, S., Waheed, A., and von Figura, K., Targeting of lysosomal acid phosphatase with altered carbohydrate. Biol. Chem. Hoppe-Seyler370 (1989) 75–80.PubMedGoogle Scholar
  115. 115.
    Gottschalk, S., Waheed, A., Schmidt, b., Laidler, P., and von Figura, K., Sequential processing of lysosomal acid phosphatase by a cytoplasmic thiol proteinase and a lysosomal aspartyl proteinase. EMBO J.8 (1989) 3215–3219.PubMedGoogle Scholar
  116. 116.
    Green, S. A., Zimmer, K-P., Griffiths, G., and Mellman, I., Kinetics of intracellular transport and sorting of lysosomal membrane and plasma membrane proteins. J. Cell Biol.105 (1987) 1227–1240.CrossRefPubMedGoogle Scholar
  117. 117.
    Griffiths, G., Hoflack, B., Simons, K., Mellman, I., and Kornfeld, S., The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell52 (1988) 329–341.PubMedGoogle Scholar
  118. 118.
    Guagliardi, L. E., Koppelman, B., Blum, J. S., Marks, M. S., Cresswell, P., and Brodsky, F. M., Co-localization of molecules involved in antigen processing and presentation in an early endocytic compartment. Nature343 (1990) 133–139.CrossRefPubMedGoogle Scholar
  119. 119.
    Gupta, D. K., Schmidt, A., von Figura, K., and Hasilik, A., Processing and transport of lysosomal enzymes in human monocyte line U937. Hoppe-Seyler's Z. Physiol. Chem.365 (1984) 867–876.Google Scholar
  120. 120.
    Haltiwanger, R. S., and Hill, R. L., The ligand binding specificity and tissue localization of a rat alveolar macrophage lectin. J. biol. Chem.261 (1986) 15696–15702.PubMedGoogle Scholar
  121. 121.
    Hancock, L. W., Ricketts, J. P., and Hildreth, IV, J., Impaired proteolytic processing of lysosomal N-acetyl-β-hexosaminidase in cultured fibroblasts from patients with infantile generalized N-acetylneuraminic acid storage disease. Biochem. biophys. Res. Commun.152 (1988) 83–92.Google Scholar
  122. 122.
    Hanewinkel, H., Glössl, J., and Kresse, H., Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts. J. biol. Chem.262 (1987) 12351–12355.PubMedGoogle Scholar
  123. 123.
    Hara, K., Kominami, E., and Katunuma, N., Effect of proteinase inhibitors on intracellular processing of cathepsin B, H and L in rat macrophages. FEBS Lett.231 (1988) 229–231.CrossRefPubMedGoogle Scholar
  124. 124.
    Harding, C. V., Collins, D. S., Slot, J. W., Geuze, H. J., and Unanue, E. R., Liposome-encapsulated antigens are processed in lysosomes, recycled, and presented to T cells. Cell64 (1991) 393–401.PubMedGoogle Scholar
  125. 125.
    harding, C. V., and Unanue, E. R., Antigen processing and intracellular Ia. Possible roles of endocytosis and protein synthesis in Ia function. J. Immun.142 (1989) 12–19.PubMedGoogle Scholar
  126. 126.
    Hasilik, A., and Neufeld, E. F., Biosynthesis of lysosomal enzymes in fibroblasts. J. biol. Chem.255 (1980) 4937–4945.PubMedGoogle Scholar
  127. 127.
    Hasilik, A., and Neufeld, E. F., Biosynthesis of lysosomal enzymes in fibroblasts. J. biol. Chem.255 (1980) 4946–4950.PubMedGoogle Scholar
  128. 128.
    Hasilik, A., Pohlmann, R., and von Figura, K., Inhibition by cyanate of the processing of lysosomal enzymes. Biochem. J.210 (1983) 795–802.PubMedGoogle Scholar
  129. 129.
    Hasilik, A., Pohlmann, R., Olsen, R. L., and von Figura, K., Myeloperoxidase is synthesized as larger phosphorylated precursor. EMBO J.3 (1984) 2671–2676.PubMedGoogle Scholar
  130. 130.
    Hasilik, A., and Tanner, W., Biosynthesis of carboxypeptidase Y in yeast. Biochem. biophys. Res. Commun.72 (1976) 1430–1436.CrossRefPubMedGoogle Scholar
  131. 131.
    Hasilik, A., and Tanner, W., Biosynthesis of the vacuolar yeast glycoprotein carboxypeptidase Y. Eur. J. Biochem.85 (1978) 599–608.Google Scholar
  132. 132.
    Hasilik, A., and von Figura, K., Oligosaccharides in lysosomal enzymes. Eur. J. Biochem.121 (1981) 125–129.CrossRefPubMedGoogle Scholar
  133. 133.
    Hasilik, A., and von Figura, K., Processing of lysosomal enzymes in fibroblasts, in: Lysosomes in Biology and Pathology, pp. 3–16. Eds J. T. Dingle, R. T. Dean and W. Sly. Elsevier Sci. Publ., Amsterdam 1984.Google Scholar
  134. 134.
    Hasilik, A., and von Figura, K., Lysosomal enzymes and the Golgi apparatus, in: Cellular and Molecular Events in Spermiogenesis, pp. 59–75. Eds D. W. Hamilton and G. M. H. Waites. Cambridge University Press, Cambridge 1990.Google Scholar
  135. 135.
    Hasilik, A., von Figura, K., Conzelmann, E., Nehrkorn, H., and Sandhoff, K., Lysosomal enzyme precursors in human fibroblasts. Eur. J. Biochem.125 (1982) 317–321.CrossRefPubMedGoogle Scholar
  136. 136.
    Hattori, T., Ichihara, S., and Nakamura, K., Processing of a plant vacuolar protein precursor in vitro. Eur. J. Biochem.166 (1987) 533–538.CrossRefPubMedGoogle Scholar
  137. 137.
    Hemmings, B. A., Zubenko, G. S., Hasilik, A., and Jones, E. W., Mutant defective in processing of an enzyme located in the lysosomelike vacuole of Saccharomyces cerevisiae. Proc. natl Acad. Sci. USA78 (1981) 435–439.PubMedGoogle Scholar
  138. 138.
    Hentze, M., Hasilik, A., and von Figura, K., Enhanced degradation of cathepsin D synthesized in the presence of the threonine analog β-hydroxynorvaline. Archs Biochem. Biophys.230 (1984) 375–382.CrossRefGoogle Scholar
  139. 139.
    Herman, E. M., Baumgartner, B., and Chrispeels, M. J., Uptake and apparent digestion of cytoplasmic organelles by protein bodies (protein storage vacuoles) in mung bean cotyledons. Eur. J. Cell Biol.24 (1981) 226–235.PubMedGoogle Scholar
  140. 140.
    Himeno, M., Fujita, H., Noguchi, Y., Kono, A., and Kato, K., Isolation and sequencing of a cDNA clone encoding acid phosphatase in rat liver lysosomes. Biochem. biophys. Res. Commun.162 (1989) 1044–1053.CrossRefPubMedGoogle Scholar
  141. 141.
    Hineno, T., Sano, A., Kondoh, K., Ueno, S-i., Kakimoto, Y., and Yoshida, K-i., Secretion of sphingolipid hydrolase activator precursor, prosaposin. Biochem. biophys. Res. Commun.176 (1991) 668–674.CrossRefPubMedGoogle Scholar
  142. 142.
    Hoefsloot, L. H., Hoogeveen-Westerveld, M., Kroos, M. A., van Beeumen, J., Reuser, A. J. J., and Oostra, B. A., Primary structure and processing of lysosomal α-glucosidase; homology with the intestinal sucrase-isomaltase complex. EMBO J.7 (1988) 1697–1704.PubMedGoogle Scholar
  143. 143.
    Holmsen, H., and Dangelmeier, C. A., Measurement of secretion of lysosomal acid glycosidases. Meth. Enzymol.169 (1989) 336–342.PubMedGoogle Scholar
  144. 144.
    Holtzman, E., Lysosomes, pp. 1–439. Plenum Press, New York 1989.Google Scholar
  145. 145.
    Holzer, H., and Heinrich, P. C., Control of proteolysis. A. Rev. Biochem.49 (1980) 63–91.CrossRefGoogle Scholar
  146. 146.
    Hoogeween, A. T., Graham-Kawashima, H., d'Azzo, A., and Galjaard, H., Processing of human β-galactosidase in GM1-gangliosidosis and Morquio B syndrome. J. biol. Chem.259 (1984) 1974–1977.PubMedGoogle Scholar
  147. 147.
    Horst, M., and Hasilik, A., Expression and maturation of human cathepsin D in baby-hamster kidney cells. Biochem. J.273 (1991) 355–361.PubMedGoogle Scholar
  148. 148.
    Howard, D. R., Natowicz, M., and Baenziger, J. U., Structural studies of the endoglycosidase H-resistant oligosaccharides present on human β-glucuronidase. J. biol. Chem.257 (1982) 10861–10868.PubMedGoogle Scholar
  149. 149.
    Hu, P., Reuser, A. J. J., Janse, H. C., Kleijer, W. J., Schindler, D., Sakuraba, H., Tsuji, A., Suzuki, Y., and van Diggelen, O. P., Biosynthesis of human α-N-acetylgalactosaminidase: defective phosphorylation and maturation in infantile α-NAGA deficiency. Biochem. biophys. Res. Commun.175 (1991) 1097–1103.CrossRefPubMedGoogle Scholar
  150. 150.
    Hubbes, M., Callahan, J., Gravel, R., and Mahuran, D., The aminoterminal sequences in the pro-α and-β polypeptides of human lysosomal β-hexosaminidase A and B are retained in the mature isozymes. FEBS Lett.249 (1989) 316–320.CrossRefPubMedGoogle Scholar
  151. 151.
    Hünseler, P., Tiedtke, A., and von Figura, K., Biosynthesis of secreted β-hexosaminidase in Tetrahymena thermophila. Biochem. J.252 (1988) 837–842.PubMedGoogle Scholar
  152. 152.
    Imai, K., Characterization of β-glucosidase as a peripheral enzyme of lysosomal membranes from mouse liver and purification. J. Biochem., Tokyo98 (1985) 1405–1416.Google Scholar
  153. 153.
    Imort, M., Zühlsdorf, M., Feige, U., Hasilik, A., and von Figura, K., Biosynthesis and transport of lysosomal enzymes in human monocytes and macrophages. Biochem. J.214 (1983) 671–678.PubMedGoogle Scholar
  154. 154.
    Isaksson, A., and Hultberg, B., Immunoassay of betahexosaminidase isoenzymes in serum in patients with raised total activities. Clinica chim. Acta183 (1989) 155–162.CrossRefGoogle Scholar
  155. 155.
    Ishidoh, K., Kominami, E., Katunuma, N., and Suzuki, K., Gene structure of rat cathepsin H. FEBS Lett.253 (1989) 103–107.CrossRefPubMedGoogle Scholar
  156. 156.
    Ishidoh, K., Kominami, E., Suzuki, K., and Katunuma, N., Gene structure and 5′-upstream sequence of rat cathepsin L. FEBS Lett.259 (1989) 71–74.CrossRefPubMedGoogle Scholar
  157. 157.
    Ishidoh, K., Towatari, T., Imajoh, S., Kawasaki, H., Kominami, E., Katunuma, N., and Suzuki, K., Molecular cloning and sequencing of cDNA for rat cathepsin L. FEBS Lett.223 (1987) 69–73.CrossRefPubMedGoogle Scholar
  158. 158.
    Isidoro, C., Horst, M., Baccino, F. M., and Hasilik, A., Differential segregation of human and hamster cathepsin D in transfected baby-hamster kidney cells. Biochem. J.273 (1991) 363–367.PubMedGoogle Scholar
  159. 159.
    Iwamoto, H., Morita, Y., Kobayashi, T., Hasegawa, E., Subunit structures of three human myeloperoxidases. J. Biochem., Tokyo103 (1988) 688–692.Google Scholar
  160. 160.
    Jackman, H. L., Tan, F., Tamei, H., Beurling-Harbury, C., Li, X-Y., Skidgel, R. A., and Erdös, E. G., A peptidase in human platelets that deamidates tachykinis. J. biol. Chem.265 (1990) 11265–11272.PubMedGoogle Scholar
  161. 161.
    Johnson, K., and Dawson, G., Molecular defect in processing α-fucosidase in fucosidosis. Biochem. biophys. Res. Commun.133 (1985) 90–97.CrossRefPubMedGoogle Scholar
  162. 162.
    Johnson, E. D., Knight, J., and Gayler, K. R., Biosynthesis and processing of legumin-like storage proteins inLupinus angustifolius (lupin). Biochem. J.232 (1985) 673–679.PubMedGoogle Scholar
  163. 163.
    Jonsson, L. M. V., Murray, G. J., Sorrell, S. H., Strijland, A., Aerts, F. F. G. M., Ginns, E. I., Barranger, J. A., Tager, J. M., and Schram, A. W., Biosynthesis and maturation of glucocerebrosidase in Gaucher fibroblasts. Eur. J. Biochem.164 (1987) 171–179.CrossRefPubMedGoogle Scholar
  164. 164.
    Joseph, L. J., Chang, L. C., Stamenkovich, D., and Sukhatme, V. P., Complete nucleotide and deduced amino acid sequences of human and murine preprocathepsin L. J. clin. Invest.81 (1988) 1621–1629.PubMedGoogle Scholar
  165. 165.
    Jung, K., Diego, J., Strobelt, V., Scholz, D., and Schreiber, G., Diagnostic Significance of some urinary enzymes for detecting acute rejection crises in renal-transplant recipients: alanine aminopeptidase, alkaline phosphatase, τ-glutamyltransferase, N-acetyl-β-D-glucosaminidase, and lysozyme. Clin. Chem.32 (1986) 1807–1811.PubMedGoogle Scholar
  166. 166.
    Kageyama, T., and Takahashi, K., Activation mechanism of monkey and porcine pepsinogens A. Eur. J. Biochem.165 (1987) 483–490.CrossRefPubMedGoogle Scholar
  167. 167.
    Kaneko, Y., Hayashi, N., Toh-e, A., Banno, I., and Oshima, Y., Structural characteristics of the PHO8 gene encoding repressible alkaline phosphatase inSaccharomyces cerevisiae. Gene58 (1987) 137–148.CrossRefPubMedGoogle Scholar
  168. 168.
    Keppler, D., Pagano, M., Dalet-Fumeron, V., and Engler, R., Purification and characterization of two different precursor forms of the cathepsin B-like proteinase from human malignant ascitic fluid. Biol. Chem. Hoppe-Seyler369 (1988) suppl. 185–190.PubMedGoogle Scholar
  169. 169.
    Klebanoff, S. J., and Clark, R. A., The Neutrophil: Function and Clinical Disorders, pp. 1–810. North-Holland Publishing Company, Amsterdam 1978.Google Scholar
  170. 170.
    Kleinschmidt, T., Christomanou, H., and Braunitzer, G., Complete amino-acid sequence and carbohydrate content of the naturally occurring glucosylceramide activator protein (A1 activator) absent from a new human Gaucher disease variant. Biol. Chem. Hoppe-Seyler368 (1987) 1571–1578.PubMedGoogle Scholar
  171. 171.
    Klionsky, D. J., Banta, L. M., and Emr, S. D., Intracellular sorting and processing of a yeast vacuolar hydrolase: Proteinase A propeptide contains vacuolar targeting information. Molec. cell. Biol.8 (1988) 2105–2116.PubMedGoogle Scholar
  172. 172.
    Klionsky, D. J., and Emr, S. D., Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J.8 (1989) 2241–2250.PubMedGoogle Scholar
  173. 173.
    Klionsky, D. J., and Emr, S. D., A new class of lysosomal/vacuolar protein sorting signals. J. biol. Chem.265 (1990) 5349–5352.PubMedGoogle Scholar
  174. 174.
    Klionsky, D. J., Herman, P. K., and Emr, S. D., The fungal vacuole: composition, function, and biogenesis. Microbiol. Rev.54 (1990) 266–292.PubMedGoogle Scholar
  175. 175.
    Koeffler, H. P., Ranyard, J., and Pertcheck, M., Myeloperoxidase: its structure and expression during myeloid differentiation. Blood65 (1985) 484–491.PubMedGoogle Scholar
  176. 176.
    Kominami, E., and Katunuma, N., Biosyntheses, processings and localizations of lysosomal cysteine proteinases, in: Intracellular Proteolysis, Mechanisms and Regulations, pp. 52–60. Eds N. Katunuma and E. Kominami. Japan Scientific Societies Press, Tokyo 1989.Google Scholar
  177. 177.
    Kominami, E., Tsukahara, T., Bando, Y., and Katunuma, N., Autodegradation of lysosomal cysteine proteinases. Biochem. biophys. Res. Commun.144 (1987) 749–756.CrossRefPubMedGoogle Scholar
  178. 178.
    Kominami, E., Tsukahara, T., Hara, K., and Katunuma, N., Biosyntheses and processing of lysosomal cysteine proteinases in rat macrophages. FEBS Lett.231 (1988) 225–228.CrossRefPubMedGoogle Scholar
  179. 179.
    Kopitz, J., Kiesen, G. Ö., Gordon, P. B., Bohley, P., and Seglen, P. O., Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J. Cell Biol.111 (1990) 941–953.CrossRefPubMedGoogle Scholar
  180. 180.
    Korchak, H. M., Vienne, K., Rutherford, L. E., and Weissmann, G., Neutrophil stimulation: receptor, membrane, and metabolic events. Fedn Proc.43 (1984) 2749–2754.Google Scholar
  181. 181.
    Korneluk, R. G., Mahuran, D. J., Neote, K., Klavins, M. H., O'Dowd, B. F., Tropak, M., Willard, H. F., Anderson, M-J., Lowden, J. A., and Gravel, R. A., Isolation of cDNA clones coding for the α-subunit of human β-hexosaminidase. J. biol. Chem.261 (1986) 8407–8413.PubMedGoogle Scholar
  182. 182.
    Kornfeld, S., Trafficking of lysosomal enzymes in normal and disease states. J. clin. Invest.77 (1986) 1–6.PubMedGoogle Scholar
  183. 183.
    Kornfeld, S., Trafficking of lysosomal enzymes. FASEB J.1 (1987) 462–468.PubMedGoogle Scholar
  184. 184.
    Kornfeld, S., and Mellman, I., The biogenesis of lysosomes. A. Rev. Cell Biol.5 (1989) 483–525.Google Scholar
  185. 185.
    Kornreich, R., Desnick, R. J., and Bishop, D. F., Nucleotide sequence of the human α-galactosidase A gene. Nucl. Acids Res.17 (1989) 3301–3302.PubMedGoogle Scholar
  186. 186.
    Krentler, C., Pohlmann, R., Hasilik, A., and von Figura, K., Lysosomal membrane proteins do not bind to mannose 6-phosphate-specific recepters. Biol. Chem. Hoppe-Seyler367 (1986) 141–145.PubMedGoogle Scholar
  187. 187.
    Laidler, P. M., Waheed, A., and Van Etten, R. L., Structural and immunochemical characterization of human urine arylsulfatase A purified by affinity chromatography. Biochim. biophys. Acta827 (1935) 73–83.Google Scholar
  188. 188.
    Lau, M. M. H., and Neufeld, E. F., A frameshift mutation in a patient with Tay-Sachs disease causes premature termination and defective intracellular transport of the α-subunit of β-hexosaminidase. J. biol. Chem.264 (1989) 21376–21380.PubMedGoogle Scholar
  189. 189.
    Lehrer, R. I., and Ganz, T., Antimicrobial polypeptides of human neutrophils. Blood76 (1990) 2169–2181.PubMedGoogle Scholar
  190. 190.
    Leibold, D. M., Robinson, C. B., Scanlin T. F., and Glick, M. C., Lack of proteolytic processing of α-L-fucosidase in human skin fibroblasts. J. Cell Physiol.137 (1988) 411–420.CrossRefPubMedGoogle Scholar
  191. 191.
    Lennartz, M. R., Cole, F. S., Shepherd, V. L., Wileman, T. E., and Stahl, P. D., Isolation and characterization of a mannose-specific endocytosis receptor from human placenta. J. biol. Chem.262 (1987) 9942–9944.PubMedGoogle Scholar
  192. 192.
    Lennartz, M. R., Wileman, T. E., and Stahl, P. D., Isolation and characterization of a mannose-specific endocytosis receptor from rabbit alveolar macrophages. Biochem. J.245 (1987) 705–711.PubMedGoogle Scholar
  193. 193.
    Lippincott-Schwartz, J., and Fambrough, D. M., Lysosomal membrane dynamics: Structure and interorganellar movement of a major lysosomal membrane glycoprotein. J. Cell Biol.192 (1986) 1593–1605.CrossRefGoogle Scholar
  194. 194.
    Little, L. E., Lau, M. M. H., Quon, D. V. K., Fowler, A. V., and Neufeld, E. F., Proteolytic processing of the α-chain of the lysosomal enzyme, β-hexosaminidase, in normal human fibroblasts. J. biol. Chem.263 (1988) 4288–4292.PubMedGoogle Scholar
  195. 195.
    Lord, J. M., Precursors of ricin andRicinus communis agglutinin. Eur. J. Biochem.146 (1985) 411–416.CrossRefPubMedGoogle Scholar
  196. 196.
    Mahuran, D. J., Neote, K., Klavins, M. H., Leung, A., and Gravel, R. A., Proteolytic processing of pro-α and pro-β precursors from human β-hexosaminidase. J. biol. Chem.263 (1988) 4612–4618.PubMedGoogle Scholar
  197. 197.
    Mane, S. M., Marzella, L., Bainton, D. F., Holt, V. K., Cha, Y., Hildreth, J. E. K., and August, J. T., Purification and characterization of human lysosomal membrane glycoproteins. Archs Biochem. Biophys.268 (1989) 360–378.CrossRefGoogle Scholar
  198. 198.
    Macquardt, T., Braulke, T., Hasilik, A., and von Figura, K., Association of the precursor of cathepsin D with coated membranes. Eur. J. Biochem.168 (1987) 37–42.CrossRefPubMedGoogle Scholar
  199. 199.
    Mason, R. W., Green, G. D. J., and Barrett, A. J., Human liver cathepsin L. Biochem. J.226 (1985) 233–241.PubMedGoogle Scholar
  200. 200.
    Mayorga, L. S., Diaz, R., and Stahl, P. D., Reconstitution of endosomal proteolysis in a cell-free system. J. biol. Chem.264 (1989) 5392–5399.PubMedGoogle Scholar
  201. 201.
    Mechler, B., Hirsch, H. H., Müller, H., and Wolf, D. H., Biogenesis of the yeast lysosome (vacuole): biosynthesis and maturation of-proteinase yscB. EMBO J.7 (1988) 1705–1710.PubMedGoogle Scholar
  202. 202.
    Mechler, B., Müller, M., Meussdoerffer, F., and Wolf, D. H., In vivo biosynthesis of the vacuolar proteinases A and B in the yeastSaccharomyces cerevisiae. J. biol. Chem.257 (1982) 11203–11206.PubMedGoogle Scholar
  203. 203.
    Mechler, B., Müller, H., and Wolf, D. H., Maturation of vacuolar (lysosomal) enzymes in yeast: proteinase yscA and proteinase yscB are catalysts of the processing and activation event of carboxypeptidase yscY. EMBO J.6 (1987) 2157–2163.PubMedGoogle Scholar
  204. 204.
    Meloun, B., Baudys, M., Pohl, J., Pavlik, M., and Kostka, V., Amino acid sequence of bovine spleen cathepsin B. J. biol. Chem.263 (1988) 9087–9093.PubMedGoogle Scholar
  205. 205.
    Mierendorf, R. C. Jr, Cardelli, J. A., and Dimond, R. L., Pathways involved in targeting and secretion of a lysosomal enzyme in Dictyostelium discoideum. J. Cell Biol.100 (1985) 1777–1787.CrossRefPubMedGoogle Scholar
  206. 206.
    Miller, A. L., Kress, B. C., Stein, R., Kinnon, C., Kern, H., Schneider, J. A., and Harms, E., Properties of N-acetyl-β-hexosaminidase from isolated normal and I-cell lysosomes. J. biol. Chem.256 (1981) 9352–9362.PubMedGoogle Scholar
  207. 207.
    Mizuochi, T., Nishimura, Y., Kato, K., and Kobata, A., Comparative studies of asparagine-linked oligosaccharide structures of rat liver microsomal and lysosomal β-glucuronidases. Archs Biochem. Biophys.209 (1981) 298–303.CrossRefGoogle Scholar
  208. 208.
    Moehle, C. M., Dixon, C. K., and Jones, E. W., Processing pathway for protease B ofSaccharomyces cerevisiae. J. Cell Biol.108 (1989) 309–324.CrossRefPubMedGoogle Scholar
  209. 209.
    Montreuil, J., Spatial conformation of glycans and glycoproteins. Biol. Cell.51 (1984) 115–131.PubMedGoogle Scholar
  210. 210.
    Morimoto, S., Yamamoto, Y., O'Brien, J. S., and Kishimoto, Y., Distribution of saposin proteins (sphingolipid activator proteins) in lysosomal storage and other diseases. Proc. natl Acad. Sci. USA87 (1990) 3493–3497.PubMedGoogle Scholar
  211. 211.
    Moriyama, A., Kageyama, T., and Takahashi, K., Identification of monkey lung procathepsin D-II as a pepsinogen-C-like acid protease zymogen. Eur. J. Biochem.132 (1983) 687–692.CrossRefPubMedGoogle Scholar
  212. 212.
    Mort, J. S., and Recklies, A. D., Interrelationship of active and latent secreted human cathepsin B precursors. Biochem. J.233 (1986) 57–63.PubMedGoogle Scholar
  213. 213.
    Mortimore, G. E., and Ward, W. F., Internalization of cytoplasmic protein by hepatic lysosomes in basal and deprivation-induced proteolytic states. J. biol. Chem.256 (1981) 7659–7665.PubMedGoogle Scholar
  214. 214.
    Müller, M., and Müller, H., Synthesis and processing of in vitro and in vivo precursors of the vacuolar yeast enzyme carboxypeptidase Y. J. biol. Chem.256 (1981) 11962–11965.PubMedGoogle Scholar
  215. 215.
    Murray, G. J., Jonsson, L. V., Sorrell, S. H., Ginns, E. I., Tager, J. M., Schram A. W., and Barranger, J. A., Phosphorylation of β-glucocerebrosidase in cultured human fibroblasts. Fedn Proc.44 (1985) 709, abstr.Google Scholar
  216. 216.
    Mutsaers, J. H. G. M., Van Halbeek, H., Vliegenthart, J. F. G., Tager, J. M., Reuser, A. J. J., Kroos, M., and Galjaard, H., Determination of the structure of the carbohydrate chains of acid α-glucosidase from human placenta. Biochim. biophys. Acta911 (1987) 244–251.PubMedGoogle Scholar
  217. 217.
    Myerowitz, R., Piekarz, R., Neufeld, E. F., Shows, T. B., and Suzuki, K., Human β-hexosaminidase α chain: Coding sequence and homology with the β chain. Proc. natl Acad Sci. USA82 (1985) 7830–7834.PubMedGoogle Scholar
  218. 218.
    Nakao, Y., Kozutsumi, Y., Kawasaki, T., Yamashina, I., van Halbeek, H., and Vliegenthart, J. F. G., Oligosaccharides on cathepsin D from procine spleen. Archs Biochem. Biophys.229 (1984) 43–54.CrossRefGoogle Scholar
  219. 219.
    Nanba, E., Tsuji, A., Omura, K., and Suzuki, Y., GM1-gangliosidosis: abnormalities in biosynthesis and early processing of β-galactosidase in fibroblasts. Biochem. biophys. Res. Commun.152 (1988) 794–800.PubMedGoogle Scholar
  220. 220.
    Nauseef, W. M., Myeloperoxidase biosynthesis by a human promyelocytic leukemia cell line: insight into myeloperoxidase deficiency. Blood67 (1986) 865–872.PubMedGoogle Scholar
  221. 221.
    Nauseef, W. M., Posttranslational processing of a human myeloid lysosomal protein, myeloperoxidase. Blood70 (1987) 1143–1150.PubMedGoogle Scholar
  222. 222.
    Neufeld, E. F., The uptake of enzymes into lysosomes: an overview. Birth Defects (March of Dimes Foundation)16 (1980) 77–84.Google Scholar
  223. 223.
    Neufeld, E. F., Natural history and inherited disorders of a lysosomal enzyme, β-hexosaminidase. J. biol. Chem.264 (1989) 10927–10930.PubMedGoogle Scholar
  224. 224.
    Neufeld, E. F., Lim, T. W., and Shapiro, L. J., Inherited disorders of lysosomal metabolism. A. Rev. Biochem.44 (1975) 357–376.CrossRefGoogle Scholar
  225. 225.
    Nishimura, Y., Amano, J., Sato, H., Tsuji, H., and Kato, K., Biosynthesis of lysosomal cathepsins B and H in cultured rat hepatocytes. Archs Biochem. Biophys.262 (1988) 159–170.CrossRefGoogle Scholar
  226. 226.
    Nishimura, Y., Furuno, K., and Kato, K., Biosynthesis and processing of lysosomal cathepsin L in primary cultures of rat hepatocytes. Archs Biochem. Biophys.263 (1988) 107–116.CrossRefGoogle Scholar
  227. 227.
    Nishimura, Y., Higaki, M., and Kato, K., Identification of a precursor form of cathepsin D in microsomal lumen: characterization of enzymatic activation and proteolytic processing in vitro. Biochem. biophys. Res. Commun.148 (1987) 335–343.CrossRefPubMedGoogle Scholar
  228. 228.
    Nishimura, Y., and Kato, K., In vitro biosynthesis of the lysosomal cathepsin H. Biochem. biophys. Res. Commun.146 (1987) 159–164.CrossRefPubMedGoogle Scholar
  229. 229.
    Nishimura, Y., and Kato, K., Intracellular transport and processing of lysosomal cathepsin B. Biochem. biophys. Res. Commun.148 (1987) 254–259.CrossRefPubMedGoogle Scholar
  230. 230.
    Nishimura, Y., and Kato, K., Intracellular transport and processing of lysosomal cathepsin H. Biochem. biophys. Res. Commun.148 (1987) 329–334.CrossRefPubMedGoogle Scholar
  231. 231.
    Nishimura, Y., and Kato, K., Identification of latent procathepsin H in microsomal lumen: characterization of proteolytic processing and enzyme activation. Archs Biochem. Biophys.260 (1988) 712–718.CrossRefGoogle Scholar
  232. 232.
    Nishimura, Y., Kawabata, T., Furuno, K., and Kato, K., Evidence that aspartic proteinase is involved in the proteolytic processing event of procathepsin L in lysosomes. Archs Biochem. biophys.271 (1989) 400–406.CrossRefGoogle Scholar
  233. 233.
    Nishimura, Y., Kawabata, T., and Kato, K., Identification of latent procathepsins B and L in microsomal lumen: characterization of enzymatic activation and proteolytic processing in vitro. Archs Biochem. Biophys.261 (1988) 64–71.CrossRefGoogle Scholar
  234. 234.
    Nishimura, Y., Kawabata, T., Yano, S., and Kato, K., Inhibition of intracellular sorting and processing of lysosomal cathepsin H and L at reduced temperature in primary cultures of rat hepatocytes. Archs Biochem. Biophys.283 (1990) 458–463.CrossRefGoogle Scholar
  235. 235.
    Nishimura, Y., Kawabata, T., Yano, S., and Kato, K., Intracellular processing and activation of lysosomal cathepsins. Acta histochem. cytochem.23 (1990) 53–64.Google Scholar
  236. 236.
    Nishimura, Y., Rosenfeld, M. G., Kreibich, G., Gubler, U., Sabatini, D. D., Adesnik, M., and Andy, R., Nucleotide sequence of rat preputial gland β-glucuronidase cDNA and in vitro insertion of its encoded polypeptide into microsomal membranes. Proc. natl Acad. Sci. USA83 (1986) 7292–7296.PubMedGoogle Scholar
  237. 237.
    Novikoff, A. B., Lysosomes: a personal account, in: Lysosomes and Storage Diseases, pp. 1–41. Eds H. G. Hers and F. van Hoof. Academic Press, New York 1973.Google Scholar
  238. 238.
    O'Brien, J. S., and Kishimoto, Y., Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J.5 (1991) 301–308.PubMedGoogle Scholar
  239. 239.
    O'Brien, J. S., Kretz, K. A., Dewji, N., Wenger, D. A., Esch, F., and Fluharty, A. L., Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus. Science241 (1988) 1098–1101.PubMedGoogle Scholar
  240. 240.
    O'Brien, J. S., de Wet, J., Fukushima, H., Wilcox, E., Dewji, N., McGee, J., Warner, T., Yoshida, A., Fluharty, A., Hill, F., and Helinski, D., Cloning of lysosomal genes, in: Molecular Basis of Lysosomal Storage Disorders, pp. 387–403. Eds J. A. Barranger and R. O. Brady. Academic Press, Orlando 1984.Google Scholar
  241. 241.
    Occhiodoro, T., Beckmann, K. R., Morris, C. P., and Hopwood, J. J., Human α-L-fucosidase: Complete coding sequence from cDNA clones. Biochem. biophys. Res. Commun.164 (1989) 439–445.CrossRefPubMedGoogle Scholar
  242. 242.
    O'Dowd, B. F., Cumming, D. A., Gravel, R. A., and Mahuran, D., Oligosaccharide structure and amino acid sequence of the major glycopeptides of mature human β-hexosaminidase. Biochemistry27 (1988) 5216–5226.CrossRefPubMedGoogle Scholar
  243. 243.
    O'Dowd, B. F., Quan, F., Willard, H. F., Lamhonwah A-M., Korneluk, R. G., Lowden, J. A., Gravel, R. A., and Mahuran, D. J., Isolation of cDNA clones coding for the β subunit of human β-hexosaminidase. Proc. natl. Acad. Sci. USA82 (1985) 1184–1188.PubMedGoogle Scholar
  244. 244.
    Ohsumi, Y., and Lee, Y. C., Mannose-receptor ligands stimulate secretion of lysosomal enzymes from rabbit alveolar macrophages. J. biol. Chem.262 (1987) 7955–7962.PubMedGoogle Scholar
  245. 245.
    Olsen, I., Abraham, D., Shelton, I., Bou-Gharios G., Muir, H., and Winchester, B., Cell contact induces the synthesis of a lysosomal enzyme precursor in lymphocytes and its direct transfer to fibroblasts. Biochim. biophys. Acta968 (1988) 312–322.CrossRefPubMedGoogle Scholar
  246. 246.
    Olsen, I., Bou-Gharios, G., and Abraham, D., The activation of resting lymphocytes is accompanied by the biogenesis of lysosomal organelles. Eur. J. Immun.20 (1990) 2161–2170.Google Scholar
  247. 247.
    Olsson, I., Persson, A-M., and Strömberg, K., Biosynthesis, transport and processing of myeloperoxidase in the human leukaemic promyelocytic cell line HL-60 and normal marrow cells. Biochem. J.223 (1984) 911–920.PubMedGoogle Scholar
  248. 248.
    Orlacchio, A., Maffei, C., Beccari, T., and Lisi, P., β-N-acetyl-D-glucosaminidase isoenzymes by chromatofocusing from serum and skin in diabetes. Clinica chim. Acta141 (1984) 127–133.CrossRefGoogle Scholar
  249. 249.
    Oshima, A., Kyle, J. W., Miller, R. D., Hoffmann, J. W., Powell, P. P., Grubb, J. H., Sly, W. S., Tropak, M., Guise, K. S., and Gravel, R. A., Cloning, sequencing, and expression of cDNA for human β-glucuronidase. Proc. natl Acad. Sci. USA84 (1987) 685–689.PubMedGoogle Scholar
  250. 250.
    Oude Elferink, R. P. J., van Doorn-van Wakeren, J., Hendriks, T., Strijland, A., and Tager, J. M., Transport and processing of endocytosed lysosomal α-glucosidase in cultured human skin fibroblasts. Eur. J. Biochem.158 (1986) 339–344.CrossRefPubMedGoogle Scholar
  251. 251.
    Overdijk, B., Beem, E. P., Van Steijn, G. J., Trippelvitz, L. A. W., Lisman, J. J. W., Paz Parente, J., Cardon, P., Leroy, Y., Fournet, B., Van Halbeek, H., Mutsaers, J. H. G. M., and Vliegenthart, J. F. G., Structural analysis of the carbohydrate chains of β-N-acetylhexosaninidases from bovine brain. Biochem. J.232 (1985) 637–641.PubMedGoogle Scholar
  252. 252.
    Pannell, R., Wood, L., and Kaplan, A., Processing and secretion of α-mannosidase forms by Dictyostelium discoideum. J. biol. Chem.257 (1982) 9861–9865.PubMedGoogle Scholar
  253. 253.
    Patthy, L., Homology of the precursor of pulmonary surfactant —associated protein SP-B with prosaposin and sulfated glycoprotein 1. J. biol. Chem.266 (1991) 6035–6037.PubMedGoogle Scholar
  254. 254.
    Pelham, H. R. B., Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J.7 (1988) 913–918.PubMedGoogle Scholar
  255. 255.
    Pelham, H. R. B., The retention signal for soluble proteins of the endoplasmic reticulum. Trends biochem. Sci.15 (1990) 483–486.CrossRefPubMedGoogle Scholar
  256. 256.
    Peters, C., Braun, M., Weber, B., Wendland, M., Schmidt, B., Pohlman, R., Waheed, A., and von Figura, K., Targeting of a lysosomal membrane protein: a tyrosine-containing endocytosis signal in the cytoplasmic tail of lysosomal acid phosphatase is necessary and sufficient for targeting to lysosomes. EMBO J.9 (1990) 3497–3506.PubMedGoogle Scholar
  257. 257.
    Peters, P. J., Geuze, H. J., van der Donk, H. A., Slot, J. W., Griffith, J. M., Stam, N. J., Clevers, H. C., and Borst, J., Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur. J. Immun.19 (1989) 1469–1475.Google Scholar
  258. 258.
    Pfanner, N., and Neupert, W., The mitochondrial protein import apparatus. A. Rev. Biochem.59 (1990) 331–353.CrossRefGoogle Scholar
  259. 259.
    Pfanner, N., Söllner, T., and Neupert, W., Mitochondrial import receptors for precursor proteins. Trends biochem. Sci.16 (1991) 63–67.CrossRefPubMedGoogle Scholar
  260. 260.
    Pfeffer, S. R., Mannose 6-phosphate receptors and their role in targeting proteins to lysosomes. J. Membr. Biol.103 (1988) 7–16.CrossRefPubMedGoogle Scholar
  261. 261.
    Pfeffer, S. R., and Rothman, J. E., Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. A. Rev. Biochem.56 (1987) 829–852.CrossRefGoogle Scholar
  262. 262.
    Pohlmann, R., Krentler, C., Schmidt, B., Schröder, W., Lorkowski, G., Cully, J., Mersmann, G., Geier, C., Waheed, A., Gottschalk, S., Grzeschik, K-H., Hasilik, A., and von Figura, K., Human lysosomal acid phosphatase: cloning, expression and chromosomal assignment. EMBO J.7 (1988) 2343–2350.PubMedGoogle Scholar
  263. 263.
    Pohlmann, R., Krüger, S., Hasilik, A., and von Figura, K., Effect of monensin on intracellular transport and receptor-mediated endocytosis of lysosomal enzymes. Biochem. J.217 (1984) 649–658.PubMedGoogle Scholar
  264. 264.
    Portnoy, D. A., Erickson, A. H., Kochan, J., Ravetch, J. V., and Unkeless, J. C., Cloning and characterization of a mouse cysteine proteinase. J. biol. Chem.261 (1986) 14697–14703.PubMedGoogle Scholar
  265. 265.
    Potier, M., Lamontagne, S., Michaud, L., and Tranchemontagne, J., Human neuraminidase is a 60 kDa-processing product of prosaposin. Biochem. biophys. Res. Commun.173 (1990) 449–456.CrossRefPubMedGoogle Scholar
  266. 266.
    Potier, M., Michaud, L., Tranchemontagne, J., and Thauvette, L., Structure of the lysosomal neuraminidase-β-galactosidase-carboxypeptidase multienzymic complex. Biochem. J.267 (1990) 197–202.PubMedGoogle Scholar
  267. 267.
    Pott, G., Schneider, M., and Gerlach, U., Demonstration of isoenzymes of N-acetyl-beta-glucosaminidase by electrofocusing in thin layers of polyacrylamide gel. Sci. Tools25 (1978) 67–69.Google Scholar
  268. 268.
    Powell, P. P., Kyle, J. W., Miller, R. D., Pantano, J., Grubb, J. H., and Sly, W. S., Rat liver β-glucuronidase. Biochem. J.250 (1988) 547–555.PubMedGoogle Scholar
  269. 269.
    Proia, R. L., Gene encoding the human β-hexosaminidase β chain: Extensive homology of intron placement in the α- and β-chain genes. Proc. natl Acad. Sci. USA85 (1988) 1883–1887.PubMedGoogle Scholar
  270. 270.
    Proia, R. L., and Neufeld, E. F., Synthesis of β-hexosaminidase in cell-free translation and in intact fibroblasts: An insoluble precursor α chain in a rare form of Tay-Sachs disease. Proc. natl Acad. Sci. USA79 (1982) 6360–6364.PubMedGoogle Scholar
  271. 271.
    Proia, R. L., and Soravia, E., Organization of the gene encoding the human β-hexosaminidase α-chain. J. biol. Chem.262 (1987) 5677–5681.PubMedGoogle Scholar
  272. 272.
    Puizdar, V., and Turk, V., Cathepsinogen D: Characterization and activation to cathepsin D and inhibitory peptides. FEBS Lett.132 (1981) 299–304.CrossRefPubMedGoogle Scholar
  273. 273.
    Quon, D. V. K., Proia, R. L., Fowler, A. V., Bleibaum, J., and Neufeld, E. F., Proteolytic processing of the β-subunit of the lysosomal enzyme, β-hexosaminidase, in normal human fibroblasts. J. biol. Chem.264 (1989) 3380–3384.PubMedGoogle Scholar
  274. 274.
    Radons, J., Isidoro, C., and Hasilik, A., Brefeldin A prevents uncovering but not phosphorylation of the recognition marker in cathepsin D. Biol. Chem. Hoppe-Seyler371 (1990) 567–573.PubMedGoogle Scholar
  275. 275.
    Rapoport, T. A., Protein transport across the ER membrane. Trends biochem. Sci.15 (1990) 355–358.CrossRefPubMedGoogle Scholar
  276. 276.
    Reilly, J. J. Jr, Mason, R. W., Chen P., Joseph, L. J., Sukhatme, V. O., Yee, R., and Chapman, H. A. Jr., Synthesis and processing of cathepsin L, an clastase, by human alveolar macrophages. Biochem. J.257 (1989) 493–498.PubMedGoogle Scholar
  277. 277.
    Reiner, O., Dagan, O., and Horowitz, M., Human sphingolipid activator protein-1 and sphingolipid activator protein-2 are encoded by the same gene. J. molec. Neurosci.1 (1989) 225–233.PubMedGoogle Scholar
  278. 278.
    Reuser, A. J. J., Kroos, M., Oude Elferink, R. P. J., and Tager, J. M., Defects in synthesis, phosphorylation, and maturation of acid α-glucosidase in glycogenosis type II. J. biol. Chem.260 (1985) 8336–8341.PubMedGoogle Scholar
  279. 279.
    Riches, D. W. H., and Stanworth, D. R., Primary amines induce selective release of lysosomal enzymes from mouse macrophages. Biochem. J.188 (1980) 933–936.PubMedGoogle Scholar
  280. 280.
    Ritonja, A., Popovic, T., Kotnik, M., Machleidt, W., and Turk, V., Amino acid sequences of the human kidney cathepsins H and L. FEBS Lett.228 (1988) 341–345.CrossRefPubMedGoogle Scholar
  281. 281.
    Robinson, J. S., Klionsky, D. J., Banta, L. M., and Emr, S. D., Protein sorting in Saccharomyces cerevisiae: Isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Molec. cell. Biol.8 (1988) 4936–4948.PubMedGoogle Scholar
  282. 282.
    Rose, J. K., and Doms, R. W., Regulation of protein export from the endoplasmic reticulum. A. Rev. Cytol.4 (1988) 258–288.Google Scholar
  283. 283.
    Rosenfeld, M. G., Kreibich, G., Popov, D., Kato, K., and Sabatini, D. D., Biosynthesis of lysosomal hydrolases: their synthesis in bound polysomes and the role of co- and post-translational processing in determining their subcellular distribution. J. Cell Biol.93 (1982) 135–143.CrossRefPubMedGoogle Scholar
  284. 284.
    Rothman, J. H., Hunter, C. P., Valls, L. A., and Stevens, T. H., Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene. Proc. natl Acad. Sci. USA83 (1986) 3248–3252.PubMedGoogle Scholar
  285. 285.
    Rothman, J. H., and Stevens, T. H., Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell47 (1986) 1041–1051.CrossRefPubMedGoogle Scholar
  286. 286.
    Rothman, J. H., Yamashiro, C. T., Kane, P. M., and Stevens, T. H., Protein targeting to the yeast vacuole. Trends biochem. Sci.14 (1989) 347–350.CrossRefPubMedGoogle Scholar
  287. 287.
    Saheki, T., and Holzer, H., Proteolytic activities in yeast. Biochim. biophys. Acta384 (1975) 203–214.PubMedGoogle Scholar
  288. 288.
    Salminen, A., and Gottesman, M. M., Inhibitor studies indicate that active cathepsin L is probably essential to its own processing in cultured fibroblasts. Biochem. J.272 (1990) 39–44.PubMedGoogle Scholar
  289. 289.
    Samarel, A. M., Ferguson, A. G. Decker, R. S., and Lesch, M., Effects of cysteine protease inhibitors on rabbit cathepsin D maturation. Am. J. Physiol.257 (1989) C1069–C1079.PubMedGoogle Scholar
  290. 290.
    Samarel, A. M., Worobec, S. W., Ferguson, A. G., Decker, R. S., and Lesch, M., Limited proteolysis of rabbit cardiac procathepsin D in a cell-free system. Am J. Physiol.250 (1986) C589–C596.PubMedGoogle Scholar
  291. 291.
    San Segundo, B., Chan, S. J., and Steiner, D. F., Identification of cDNA clones encoding a precursor of rat liver cathepsin B. Proc. natl Acad. Sci. USA82 (1985) 2320–2324.PubMedGoogle Scholar
  292. 292.
    Sandhoff, K., and Conzelmann, E., The biochemical basis of gangliosidoses. Neuropediatrics15 (1985) suppl. 85–92.Google Scholar
  293. 293.
    Sandoval, I. V., Chen, J. W., Yuan, L., and August, J. T., Lysosomal integral membrane glycoproteins are expressed at high levels in the inclusion bodies of I-cell disease fibroblasts. Archs Biochem. Biophys.271 (1989) 157–167.CrossRefGoogle Scholar
  294. 294.
    Sano, A., Radin, N. S., Johnson, L. L., and Tarr, G. E., The activator protein for glucosylceramide β-glucosidase from Guinea pig liver. J. biol. Chem.263 (1988) 19597–19601.PubMedGoogle Scholar
  295. 295.
    Schäfer, W., Kalisz, H., and Holzer, H., Evidence for nonvacuolar proteolytic catabolite inactivation of yeast fructose-1,6-bisphosphatase. Biochim. biophys. Acta925 (1987) 150–155.PubMedGoogle Scholar
  296. 296.
    Schlesinger, P. H., Rodman, J. S., Doebber, T. W., Stahl, P. D., Lee, Y. C., Stowell, C. P., Kuhlenschmidt, T. B., The role of extra-hepatic tissues in the receptor-mediated plasma clearance of glycoproteins terminated by mannose or N-acetylglucosamine. Biochem. J.192 (1980) 597–606.PubMedGoogle Scholar
  297. 297.
    Schnyder, J., and Baggiolini, M., Secretion of lysosomal hydrolases by stimulated and nonstimulated macrophages. J. exp. Med.148 (1978) 435–450.CrossRefPubMedGoogle Scholar
  298. 298.
    Schönholzer, F., Schweingruber, A-M. Trachsel, H., and Schweingruber, M. W., Intracellular maturation and secretion of acid phosphatase ofSaccharomyces cerevisiae. Eur. J. Biochem.147 (1985) 273–279.CrossRefPubMedGoogle Scholar
  299. 299.
    Schröder, M., Klima, H., Nakano, T., Kwon, H., Quintern, L.E., Gärtner, S., Suzuki, K., and Sandhoff, K., Isolation of a cDNA encoding the human GM2 activator protein. FEBS Lett.251 (1989) 197–200.CrossRefPubMedGoogle Scholar
  300. 300.
    Schorlemmer, H. U., Davies, P., Hylton, W., Gugig, M., and Allison, A. C., The selective release of lysosomal acid hydrolases from mouse peritoneal macrophages by stimuli of chronic inflammation. Br. J. exp. Path.58 (1977) 315–326.Google Scholar
  301. 301.
    Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (Eds), The Metabolic Basis of Inherited Disease, 6th edn., vol. 1, pp. 1–1475 and vol. 2, pp. 1477–3006. McGraw-Hill, New York 1989.Google Scholar
  302. 302.
    Shepherd, V. L., Konish, M. G., and Stahl, P., Dexamethasone increases expression of mannose receptors and decreases extracellular lysosomal enzyme accumulation in macrophages. J. biol. Chem.260 (1985) 160–164.PubMedGoogle Scholar
  303. 303.
    Shewale, J. G., Takahashi, T., and Tang, J., The primary structure of cathepsin D and the implications for its biological functions, in: Aspartic Proteinases and Their Inhibitors, pp. 101–116. Ed. V. Kostka. Walter de Gruyter & Co, Berlin 1985.Google Scholar
  304. 304.
    Shewale, J. G., and Tang, J., Amino acid sequence of porcine spleen cathepsin D. Proc. natl Acad. Sci. USA81 (1984) 3703–3707.PubMedGoogle Scholar
  305. 305.
    Silva, I. A., Murrills, R. J., and Etherington, D. J., Microelectrodes studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell. Res.5 (1988) 266–276.CrossRefGoogle Scholar
  306. 306.
    Skudlarek, M. D., Novak, E. K., and Swank, R. T., Processing of lysosomal enzymes in macrophages and kidney, in: Lysosomes in Biology and Pathology, pp. 17–43. Eds J. T. Dingle, R. T. Dean and W. Sly. Elsevier Sci. Publ., Amsterdam 1984.Google Scholar
  307. 307.
    Skudlarek, M. D., and Swank, R. T., Biosynthesis of two lysosomal enzymes in macrophages. J. biol. Chem.254 (1979) 9939–9942PubMedGoogle Scholar
  308. 308.
    Skudlarek, M. D., and Swank, R. T., Turnover of two lysosomal enzymes in macrophages. J. biol. Chem.256 (1981) 10137–10144.PubMedGoogle Scholar
  309. 309.
    Slot, L. A., and Hendil, K. B., α2-Macroglobulin used to isolate intracellular endopeptidases from mammalian cells in culture. Biochem. J.255 (1988) 437–443.PubMedGoogle Scholar
  310. 310.
    Sly, W. S., and Fischer, H. D., The phosphomannosyl recognition system for intracellular and intercellular transport of lysosomal enzymes. J. Cell Biochem.18 (1982) 67–85.CrossRefPubMedGoogle Scholar
  311. 311.
    Smith, R. J., Wierenga, W., and Iden, S. S., Characteristics of N-formyl-methionyl-leucyl-phenylalanine as an inducer of lysosomal enzyme release from human neutrophils. Inflammation4 (1980) 73–88.CrossRefPubMedGoogle Scholar
  312. 312.
    Sonderfeld-Fresko, S., and Proia, R. L., Synthesis and assembly of a catalytically active lysosomal enzyme β-hexosaminidase B, in a cell-free system. J. biol. Chem.263 (1988) 13463–13469.PubMedGoogle Scholar
  313. 313.
    Sonderfeld-Fresko, S., and Proia, R. L., Analysis of the glycosylation and phosphorylation of the lysosomal enzyme, β-hexosaminidase B, by site-directed mutagenesis. J. biol. Chem.264 (1989) 7692–7697.PubMedGoogle Scholar
  314. 314.
    Sorge, J., West, C., Westwood, B., and Beutler, E., Molecular cloning and nucleotide sequence of human glucocerebrosidase cDNA. Proc. natl Acad. Sci USA82 (1985) 7289–7293.PubMedGoogle Scholar
  315. 315.
    Stahl, P. D., Rodman, J. S., Miller, M. J., and Schlesinger, P. H., Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc. natl Acad. Sci. USA75 (1978) 1399–1403.PubMedGoogle Scholar
  316. 316.
    Stahl, P. D., Wileman, T. E., and Shepherd, V. L., The mannose recognition pathway-implications for lysosome physiology, in: Molecular Basis of Lysosomal Storage Disorders, pp 209–218. Eds J. A. Barranger and R. O. Brady. Academic Press, Inc., Orlando 1984.Google Scholar
  317. 317.
    Starkey, P. M., and Barrett, A. J., Human cathepsin B1. Inhibition by α2-macroglobulin and other serum proteins. Biochem. J.131 (1973) 823–831.PubMedGoogle Scholar
  318. 318.
    Steckel, F., Hasilik, A., and von Figura, K., Multiple sulfatase deficiency: Degradation of arylsulfatase A and B after endocytosis in fibroblasts. Eur. J. Biochem.151 (1985) 147–152.CrossRefPubMedGoogle Scholar
  319. 319.
    Stein, C., Gieselman, V., Kreysing, J., Schmidt, B., Pohlmann, R., Waheed, A., Meyer, H. E., O'Brien, J. S., and von Figura, K., Cloning and expression of human arylsulfatase A. J. biol. Chem.264 (1989) 1252–1259.PubMedGoogle Scholar
  320. 320.
    Stein, C., Hille, A., Seidel, J., Rijnbout, S., Waheed, A., Schmidt, B., Geuze, H., and von Figura, K., Cloning and expression of human steroid-sulfatase. J. biol. Chem.264 (1989) 13865–13872.PubMedGoogle Scholar
  321. 321.
    Stirling, J., Leung, A., Gravel, R. A., and Mahuran, D., Localization of the pro-sequence within the total deduced primary structure of human β-hexosaminidase B. FEBS Lett.231 (1988) 47–50.CrossRefPubMedGoogle Scholar
  322. 322.
    Strömberg, K., Persson, A-M., and Olsson, I., The processing and intracellular transport of myeloperoxidase — modulation by lysosomotropic agents and monensin. Eur. J. Cell. Biol.39 (1986) 424–431.PubMedGoogle Scholar
  323. 323.
    Suzuki, Y., Sakuraba, H., Hayashi, K., Suzuki, K., and Imahori, K., β-galactosidase-neuraminidase deficiency: Restoration of β-galactosidase activity by protease inhibitors. J. Biochem. Tokyo90 (1981) 271–273.PubMedGoogle Scholar
  324. 324.
    Takahashi, T., Dehdarani, A. H., and Tang, J., Porcine spleen cathepsin H hydrolyzes oligopeptides solely by aminopeptidase activity. J. biol. Chem.263 (1988) 10952–10957.PubMedGoogle Scholar
  325. 325.
    Takahashi, T., Dehdarani, A. H., Yonezawa, S., and Tang, J., Porcine spleen cathepsin B is an exopeptidase. J. biol. Chem.261 (1986) 9375–9381.PubMedGoogle Scholar
  326. 326.
    Takahashi, T., Schmidt, P. G., and Tang, J., Oligosaccharide units of lysosomal cathepsin D from porcine spleen. J. biol. Chem.258 (1983) 2819–2830.PubMedGoogle Scholar
  327. 327.
    Takahashi, T., Schmidt, P. G., and Tang, J., Novel carbohydrate structures of cathepsin B from porcine spleen. J. biol. Chem.259 (1984) 6059–6062.PubMedGoogle Scholar
  328. 328.
    Takahashi, T., and Tang, J., Amino acid sequence of porcine spleen cathepsin D light chain. J. biol. Chem.258 (1983) 6435–6443.PubMedGoogle Scholar
  329. 329.
    Takahashi, T., Yonezawa, S., Dehdarani, A. H., and Tang, J., Comparative studies of two cathepsin B isozymes from porcine spleen. J. biol. Chem.261 (1986) 9368–9374.PubMedGoogle Scholar
  330. 330.
    Takasaki, S., Murray, G. J., Furbish, F. S., Brady, R. O., Barranger, J. A., and Kobata, A., Structure of the N-asparagine-linked oligosaccharide units of human placental β-glucocerebrosidase. J. biol. Chem.259 (1984) 10112–10117.PubMedGoogle Scholar
  331. 331.
    Takio, K., Towatari, T., Katunuma, N., Teller, D. C., and Titani, K., Homology of amino acid sequences of rat liver cathepsins B and H with that of papain. Proc. natl Acad. Sci. USA80 (1983) 3666–3670.PubMedGoogle Scholar
  332. 332.
    Tanaka, Y., Yano, S., Furuno, K., Ishikawa, T., Himeno, M., and Kato, K., Transport of acid phosphatase to lysosomes does not involve passage through the cell surface. Biochem. biophys. Res. Commun.170 (1990) 1067–1073.CrossRefPubMedGoogle Scholar
  333. 333.
    Tanaka, Y., Yano, S., Okada, K., Ishikawa, T., Himeno, M., and Kato, K., Lysosomal acid phosphatase is transported via endosomes to lysosomes. Biochem. biophys. Res. Commun.166 (1990) 1176–1182.CrossRefPubMedGoogle Scholar
  334. 334.
    Tang, J., and Wong, R. N. S., Evolution in the structure and function of aspartic proteases. J. Cell Biochem.33 (1987) 53–63.CrossRefPubMedGoogle Scholar
  335. 335.
    Taniguchi, T., Mizuochi, T., Towatari, T., Katunuma, N., and Kobata, A., Structural studies on the carbohydrate moieties of rat liver cathepsins B and H. J. Biochem., Tokyo97 (1985) 973–976.Google Scholar
  336. 336.
    Taylor, K. L., Guzman, G. S., Pohl, J., and Kinkade, J. M.Jr, Distinct chromatographic forms of human hemi-myeloperoxidase obtained by reductive cleavage of the dimeric enzyme. J. biol. Chem.265 (1990) 15938–15946.PubMedGoogle Scholar
  337. 337.
    Thomas, D. J., Richards, A. D., and Kay, I., Inhibition of aspartic proteinases by α2-macroglogulin. Biochem. J.259 (1989) 905–907.PubMedGoogle Scholar
  338. 338.
    Townsend, A., and Bodmer, H., Antigen recognition by class I-restricted T lymphocytes. A. Rev. Immun.7 (1989) 601–624.Google Scholar
  339. 339.
    Tranchenontagne, J., Michaud, L., and Potier, M., Deficient lysosomal carboxypeptidase activity in galactosialidosis. Biochem. biophys. Res. Commun.168 (1990) 22–29.CrossRefPubMedGoogle Scholar
  340. 340.
    Troyen, B. R., Ascherman, D., Atlas, D., and Gottesman, M. M., Cloning and expression of the gene for the major excreted protein of transformed mouse fibroblasts. J. biol. Chem.263 (1988) 254–261.PubMedGoogle Scholar
  341. 341.
    Tschopp, J., and Nabholz, M., Perforin-mediated target cell lysis by cytotoxic T lymphocytes. A. Rev. Immun.8 (1990) 279–320.Google Scholar
  342. 342.
    Tsuji, S., Choudary, P. V., Martin, B. M., Winfield, S., Barranger, J. A., and Ginns, E. I., Nucleotide sequence of cDNA containing the complete coding sequence for human lysosomal glucocerebrosidase. J. biol. Chem.261 (1986) 50–53.PubMedGoogle Scholar
  343. 343.
    Tsuji, S., Yamauchi, T., Hiraiwa, M., Isobe, T., Okuyama, T., Sakimura, K., Takahashi, Y., Nishizawa, M., Uda, Y., and Miyatake, T., Mole ular cloning of a full-length cDNA for human α-N-acetylgalactosaminidase (α-galactosidase B). Biochem. biophys. Res. Commun.163 (1989) 1498–1504.CrossRefPubMedGoogle Scholar
  344. 344.
    Tsukamoto, T., Miura, S., and Fujiki, Y., Restoration by a 35K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature350 (1991) 77–78.CrossRefPubMedGoogle Scholar
  345. 345.
    Ullrich, K., Basner, R., Gieselmann, V., and von Figura, K., Recognition of human urine α-N-acetylglucosaminidase by rat hepatocytes. Biochem. J.180 (1979) 413–419.PubMedGoogle Scholar
  346. 346.
    Ullrich, K., Gieselmann, V., Mersmann, G., and von Figura, K., Endocytosis of lysosomal enzymes by non-parenchymal rat liver cells. Biochem. J.182 (1979) 329–335.PubMedGoogle Scholar
  347. 347.
    van der Horst, G. T. J., Galjart, N. J., d'Azzo, A., Galjaard, H., and Verheijen, F. W., Identification and in vitro reconstitution of lysosomal neuraminidase from human placenta. J. biol. Chem.264 (1989) 1317–1322.PubMedGoogle Scholar
  348. 348.
    van Diggelen, O. P., Hoogeveen, A. T., Smith, P. J., Reuser, A. J. J., and Galjaard, H., Enhanced proteolytic degradation of normal β-galactosidase in the lysosomal storage disease with combined β-galactosidase and neuraminidase deficiency. Biochim. biophys. Acta703 (1983) 69–76.Google Scholar
  349. 349.
    van Diggelen, O. P., Schram, A. W., Sinnott, M. L., Smith, P. J., Robinson, D., and Galjaard, H., Turnover of β-galactosidase in fibroblasts from patients with genetically different types of β-galactosidase deficiency. Biochem. J.200 (1981) 143–151.PubMedGoogle Scholar
  350. 350.
    Verner, K., and Schatz, G., Protein translocation across membranes. Science241 (1988) 1307–1313.PubMedGoogle Scholar
  351. 351.
    Vladutiu, G. D., Effect of the co-existence of galactosyl and phosphomannosyl residues on β-hexosaminidase on the processing and transport of the enzyme in mucolipidosis I fibroblasts. Biochim. biophys. Acta760 (1983) 363–370.PubMedGoogle Scholar
  352. 352.
    Vladutiu, G. D., and Rattazzi, M. C., Abnormal lysosomal hydrolases excreted by cultured fibroblasts in I-cell disease (mucolipidosis II). Biochem. biophys. Res. Commun.67 (1975) 956–964.CrossRefPubMedGoogle Scholar
  353. 353.
    Vladutiu, G. D., and Rattazzi, M. C., Excretion-reuptake route of β-hexosaminidase in normal and I-cell disease cultured fibroblasts. J. clin. Invest.63 (1979) 595–601.PubMedGoogle Scholar
  354. 354.
    von Figura, K., and Hasilik, A., Lysosomal enzymes and their receptors. A. Rev. Biochem.55 (1986) 167–193.CrossRefGoogle Scholar
  355. 355.
    von Figura, K., Hasilik, A., and Steckel, F., Lysosomal storage disorders caused by instability of the missing enzymes, in: Molecular Basis of Lysosomal Storage Disorders, pp. 133–143. Eds J. A. Barranger and R. O. Brady. Academic Press, Inc., Orlando 1984.Google Scholar
  356. 356.
    von Figura, K., Steckel, F., Conary, J., Hasilik, A., and Shaw, E., Heterogeneity in late-onset metachromatic leukodystrophy. Effect of inhibitors of cysteine proteinases. Am. J. hum. Genet.39 (1986) 371–382.PubMedGoogle Scholar
  357. 357.
    von Figura, K., Steckel, F., and Hasilik, A., Juvenile and adult metachromatic leukodystrophy: Partial restoration of arylsulfatase A (cerebroside sulfatase) activity by inhibitors of thiol proteinases. Proc. natl Acad. Sci. USA80 (1983) 6066–6070.PubMedGoogle Scholar
  358. 358.
    Wada, K., Takai, T., and Tanabe, T., Amino acid sequence of chicken liver cathepsin L. Eur. J. Biochem.167 (1987) 13–18.CrossRefPubMedGoogle Scholar
  359. 359.
    Waheed, A., Gottschalk, S., Hille, A., Krentler, C., Pohlmann, R., Braulke, T., Hauser, H., Geuze, H., and von Figura, K., Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes in transfected baby hamster kidney cells. EMBO J.7 (1988) 2351–2358.PubMedGoogle Scholar
  360. 360.
    Waheed, A., Hasilik, A., and von Figura, K., Synthesis and processing of arylsulfatase A in human skin fibroblasts. Hoppe-Seyler's Z. Physiol. Chem.363 (1982) 425–430.PubMedGoogle Scholar
  361. 361.
    Waheed, A., Hasilik, A., and von Figura, K., UDP-N-acetylglucosamine: lysosomal enzyme precursor N-acetylglucosamine-1-phosphotransferase. J. biol. Chem.257 (1982) 12322–12331.PubMedGoogle Scholar
  362. 362.
    Waheed, A., Steckel, F., Hasilik, A., and von Figura, K., Two allelic forms of human arylsulfatase A with different numbers of asparagine-linked oligosaccharides. Am. J. hum. Genet.35 (1983) 228–233.PubMedGoogle Scholar
  363. 363.
    Waheed, A., and van Etten, R. L., Phosphorylation and sulfation of arylsulfatase A accompanies biosynthesis of the enzyme in normal and carcinoma cell lines. Biochim. biophys. Acta847 (1985) 53–61.CrossRefPubMedGoogle Scholar
  364. 364.
    Wang, A. M., Bishop, D. F., and Desnick, R. J., Human α-N-acetylgalactosaminidase-molecular cloning, nucleotide sequence, and expression of a full-length cDNA. J. biol. Chem.265 (1990) 21859–21866.PubMedGoogle Scholar
  365. 365.
    Watanabe, T., Watanabe, M., Ishii, Y., Matsuba, H., Kimura, S., Fujita, T., Kominami, E., Katunuma, N., and Uchiyama, Y., An immunocytochemical study on co-localization of cathepsin B and atrial natriuretic peptides in secretory granules of atrial myoendocrine cells of rat heart. J. Histochem. Cytoche.37 (1989) 347–351.Google Scholar
  366. 366.
    Weber, W., Kehrer, T., Gressner, A. M., Stuhlsatz, H. W., and Greilling, H., Changes in the catalytic activities of proteoglycan-degrading lysosomal enzymes in parenchymal and non-parenchymal liver cells and in serum during the development of experimental liver fibrosis. J. clin. Chem. clin. Biochem.21 (1983) 287–293.PubMedGoogle Scholar
  367. 367.
    Weissmann, G., Korchak, H. M., Perez, H. D., Smolen, J. E., Goldstein, I. M., and Hoffstein, S. T., The secretory code of the neutrophil. J. reticuloendoth Soc.26 (1979) 687–700.Google Scholar
  368. 368.
    Whiting, P. H., Ross, I. S., and Borthwick, L., Serum and urine N-acetyl-β-D-glucosaminidase in diabetics on diagnosis and subsequent treatment, and stable insulin dependent diabetics. Clinica chim. Acta92 (1979) 459–463.CrossRefGoogle Scholar
  369. 369.
    Wiederanders, B., and Kirschke, H., The processing of cathepsin L precursor in vitro. Archs Biochem. Biophys.272 (1989) 516–521.CrossRefGoogle Scholar
  370. 370.
    Wiesmann, U., Vassella, F., Herschkowitz, N., “I-cell” disease: leakage of lysosomal enzymes into extracellular fluids. N. Engl. J. Med.285 (1971) 1090–1091.Google Scholar
  371. 371.
    Willcox, P., and Ratray, S., Secretion and uptake of β-N-acetylglucosaminidase by fibroblasts. Biochim. biophys. Acta586 (1979) 442–452.PubMedGoogle Scholar
  372. 372.
    Williams, M. A., and Fukuda, M., Accumulation of membrane glycoproteins in lysosomes requires a tyrosine residue at a particular position in the cytoplasmic tail. J. Cell Biol.111 (1990) 955–966.CrossRefPubMedGoogle Scholar
  373. 373.
    Wilson, P. J., Morris, C. P., Anson, D. S., Occhiodoro, T., Bielicki, J., Clements, P. R., and Hopwood, J. J., Hunter syndrome: isolation of an iduronate-2-sulfatase cDNA clone and analysis of patient DNA. Proc. natl Acad. Sci. USA87 (1990) 8531–8535.PubMedGoogle Scholar
  374. 374.
    Woolford, C. A., Daniels, L. B., Park, F. J., Jones, E. W., van Arsdell, J. N., and Innis, M. A., The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation ofSaccharomyces cerevisiae vacuolar hydrolases. Molec. cell. Biol.6 (1986) 2500–2510.PubMedGoogle Scholar
  375. 375.
    Yamada, M., Myeloperoxidase precursors in human myeloid leukemia HL-60 cells. J. biol. Chem.257 (1982) 5980–5982.PubMedGoogle Scholar
  376. 376.
    Yen, P. H., Allen, E., Marsh, B., Mohandas, T., Wang, N., Taggart, R. T., and Shapiro, L. J., Cloning and expression of steroid sulfatase cDNA and the frequent occurrence of deletions in STS deficiency: implications for X-Y interchange. Cell49 (1987) 443–454.CrossRefPubMedGoogle Scholar
  377. 377.
    Yonezawa, S., Takahashi, T., Ichinose, M., Miki, K., Tanaka, J., and Gasa, S., Structural studies of rat cathepsin E: Amino-terminal structure and carbohydrate units of mature enzyme. Biochem. biophys. Res. Commun.166 (1990) 1032–1038.CrossRefPubMedGoogle Scholar
  378. 378.
    Yonezawa, S., Takahashi, T., Wang, X-j., Wong, R. N. S., Hartsuck, J. A., and Tang, J., Structures at the proteolytic processing region of cathepsin D. J. biol. Chem.263 (1988) 16504–16511.PubMedGoogle Scholar
  379. 379.
    Yoshihisa, T., and Anraku, Y., A novel pathway of import of α-mannosidase, a marker enzyme of vacuolar membrane, inSaccharomyces cerevisiae. J. biol. Chem.265 (1990) 22418–22425.PubMedGoogle Scholar
  380. 380.
    Youngdhal-Turner, P., Rosenberg, L. E., and Allen, R. H., Binding and uptake of transcobalamin II by human fibroblasts. J. clin. Invest.61 (1978) 133–141.PubMedGoogle Scholar
  381. 381.
    Zubenko, G. S., Park, F. J., and Jones, E. W., Mutations in PEP4 locus ofSaccharomyces cerevisiae block final step in maturation of two vacuolar hydrolases. Proc. natl Acad. Sci. USA80 (1983) 510–514.PubMedGoogle Scholar
  382. 382.
    Zühlsdorf, M., Imort, M., Hasilik, A., and von Figura, K., Molecular forms of β-hexosaminidase and cathepsin D in serum and urine of healthy subjects and patients with elevated activity of lysosomal enzymes. Biochem. J.213 (1983) 733–740.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • A. Hasilik
    • 1
  1. 1.Institute for Physiological Chemistry and PathobiochemistryUniversity of MünsterMünster(Germany)

Personalised recommendations