, Volume 50, Issue 10, pp 897–905 | Cite as

Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms

  • G. Höflich
  • W. Wiehe
  • G. Kühn
Multi-Author Reviews Symbiotic Interactions Between Microorganisms and Plants


SelectedRhizobium bacteria, arbuscular mycorrhiza-forming (AM) fungi and associative bacteria have been shown to stimulate the growth of legumes, gramineae and cruciferae in field experiments on different soil types in temperate regions. A combination of microorganisms with different metabolic capacities (N2-fixation, P-mobilization; production of phytohormones and antibiotics) can partly surpass the effect of single inoculations, or can produce a positive effect where single inoculations are ineffective. Growth stimulation by inoculation requires microorganisms with phytoeffective metabolic characteristics and the ability to survive in the rhizosphere during the growth period. Another prerequisite is an adequate supply of plant assimilates for the production of microbial phytoeffective metabolites. Type of inoculum, method of inoculation and agricultural measures can influence the effect of the inoculation. Research is necessary to extend our knowledge both of basic principles, and about using microorganisms in practice.

Key words

Rhizosphere microorganisms plant growth promotion N2-fixation P-mobilization phytohormones antagonism root colonization growth conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afanaseva, L. M., Dorosinskii, L. M., and Kozemjakow, A. P., O celesoobraznosti ispol'zovanija mineral'nogo azota pri vozdelyvanii bobovych kul'tur (On expediency of use of mineral nitrogen for legumes) Sel'-khoz. Biol., Mosk. 4 (1983) 6–8.Google Scholar
  2. 2.
    Bakker, A. W., and Schippers, B., Microbial cyanide production in the rhizosphere in relation to potato yield reduction andPseudomonas-mediated growth stimulation. Soil Biol. Biochem.19 (1987) 451–457.CrossRefGoogle Scholar
  3. 3.
    Baltruschat, H., Evaluation of the suitability of expanded clay as carrier material for VA mycorrhiza spores in field inoculation of maize. Angew. Bot61 (1987) 163–169.Google Scholar
  4. 4.
    Baltruschat, H., and Schönbeck, F., Untersuchungen über den Einfluß der endotrophen Mykorrhiza auf den Befall von Tabak mitThielaviopsis basicola. Phytopath. Z.84 (1975) 172–188.Google Scholar
  5. 5.
    Bilal, R., Rasul, G., and Malik, K. A., Attachment, colonization and proliferation ofAzospirillum brasilense andEnterobacter spp. on root surface of grasses. World J. Microbiol. Biotechnol.9 (1993) 63–69.CrossRefGoogle Scholar
  6. 6.
    Bochow, H., Possibilities of protecting plant roots against phytopathogens by biological means (biological control) in: Interrelationship between Microogranisms and Plants in Soil, pp. 357–370. Ed. V. Vancura proceeding of an International Symposium, Liblice, June 22–27, 1987 Czechoslovakia 1989.Google Scholar
  7. 7.
    Boelens, J., Zoutmann, D., Campbell, J., Verstraete, W., and Paranchych, W., The use of bioluminescence as a reporter to study the adherence of the plant growth promoting rhizopseudomonas 7NSK2 and ANP15 to canola roots. Can. J. Microbiol.39 (1993) 329–334.Google Scholar
  8. 8.
    Danneberg, G., Latus, C., Zimmer, W., Hundeshagen, B., Schneider-Poetsch, H. J., and Bothe, H., Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J. Pl. Physiol.141 (1992) 33–39.Google Scholar
  9. 9.
    Defreitas, J. R., and Germida, J. J., Growth promotion of winter wheat by fluorescentPseudomonas under field conditions. Soil Boil. Biochem.24 (1992) 1137–1146.CrossRefGoogle Scholar
  10. 10.
    De Weger, L. A., Schippers, B., and Lugtenberg, B., Plant growth stimulation by biological interference in iron metabolism in the rhizosphere, in: Iron Transport in Microbes, Plants and Animals, pp. 387–400. Eds G. Winkelmann, D. Van Der Helm, J. B. Neilands, Weinheim 1987.Google Scholar
  11. 11.
    Döbereiner, J., and Boddy, R. M., Nitrogen fixation in association with Gramineae, in Current Perspectives in Nitrogen Fixation, pp. 305–312 Eds A. H. Gibson, and W. E. Newton, Elsevier Amsterdam New York Oxford 1981.Google Scholar
  12. 12.
    Dörfling, K., Das Hormonsystem der Pflanzen. Thieme, Stuttgart 1982.Google Scholar
  13. 13.
    Dorosinskii, L. M., and Buziasili, D. M., Effektivnost' kluben'kovych bakterij ljupina i sintezirovanie imi fiziolog. aktivnych vescestv. VASChNIL Vsesojuznyi nauc.—Issled. Inst. Sel;-khoz. Mikrobiol11 (1971) 190–196.Google Scholar
  14. 14.
    England, L. S., Lee, H., and Trevors, J. T., Bacterial survival in soil—effect of clays and protozoa. Soil Biol. Biochem.25 (1993) 525–531.CrossRefGoogle Scholar
  15. 15.
    Fages, J., An industrial view ofAzospirillum inoculants: formulation and application technology. Symbiosis13 (1992) 15–26.Google Scholar
  16. 16.
    Fallik, E., Okon, Y., and Fischer, M., The effect ofAzospirillum brasilense inoculation on metabolic enzyme activity in maize root seedlings. Symbiosis6 (1988) 17–28.Google Scholar
  17. 17.
    Förster, I., Beiträge zur Phosphormobilisierung durch Bodenmikroorganismen. 1. Mitt. Wechselbeziehungen zwischen mikrobieller Aktivität in der Rhizosphäre und Phosphataufnahme der Pflanze. Zentbl. Mikrobiol.139 (1984) 519–526.Google Scholar
  18. 18.
    Gianinazzi-Pearson, V., Gianinazzi, S., and Trouvelot, Evaluation on the infectivity and effectiveness of indigenous VAM populations in some agric soils in Burgundy. Can. J. Bot.63 (1985) 1521–1524.Google Scholar
  19. 19.
    Giddens, J. E., Duningan, E. P., and Weaver, R. W., Legume inoculation in the southeastern USA. Sth. Coop. Ser. Bull. Spec.283 (1982).Google Scholar
  20. 20.
    Gisi, U., Bodenökologie. Georg Thieme Verlag, Stuttgart-New York 1990.Google Scholar
  21. 21.
    Glandorf, D. C. M., Brand, I., Bakker, P. A. H. M., and Schippers, B., Stability of rifampicin resistance as a marker for root colonization studiesPseudomonas putida in the field. Pl. Soil147 (1992) 135–142.Google Scholar
  22. 22.
    Glante, F., Bedeutung von VA-Mykorrhizapilzen für Wachstum und Entwicklung der Kulturpflanzen. Zentbl. Mikrobiol.145 (1990) 399–409.Google Scholar
  23. 23.
    Haahtela, K. T., Wartiovaara, T., Sundman, V., and Skujins, U. Roots-associated N2 fixation (acetylene reduction) by Enterobacteriaceae andAzospirillum strain in cold-climate spodosol. Appl. envir. Microbiol.41 (1981) 203–206.Google Scholar
  24. 24.
    Halverson, L. J., Clayton, M. K., and Handelsman, J., Population biology ofBacillus cereus UW85 in the rhizosphere of field grown soybeans. Soil Biol. Biochem.25 (1993) 485–493.CrossRefGoogle Scholar
  25. 25.
    Hargrove, W. L., Boswell, F. C., and Touchton, J. T., Correlation of extractable soil phosphorus and plant phosphorus with crop yield for double-cropped wheat and soybeans. Res. Bull., Athens, Univ. of Georgia, College of Agric.304 (1984) 14 pp.Google Scholar
  26. 26.
    Hayman, D. S., Mycorrhiza and crop production. Nature287 (1980) 487–488.CrossRefGoogle Scholar
  27. 27.
    Hayman, D. S., The Physiology of VA-Mycorrhiza symbioses. Can. J. Bot.61 (1983) 944–963.Google Scholar
  28. 28.
    Hayman, D. S., and Mosse, B., Improved growth of white clover in hill grasslands by mycorrhizal inoculation. Ann. appl. Biol.93 (1979) 141–148.Google Scholar
  29. 29.
    Heijnen, C. E., Hokahin, C. H., and Vanelsas, J. D., Root colonization byPseudomonas fluorescens introduced into soil amended with bentonite. Soil Biol. Biochem.25 (1993) 239–246.CrossRefGoogle Scholar
  30. 30.
    Helal, H. M., and Sauerbeck, D., Influence of plant roots on carbon and phosphorus metabolism in soil. Pl. Soil76 (1984) 175–182.Google Scholar
  31. 31.
    Höflich, G., Influence of inoculation ofRhizobium-bacteria on growth of cereals. Zentbl. mikrobiol.144 (1989) 77–79.Google Scholar
  32. 32.
    Höflich, G., Wechselbeziehungen zwischen phytoeffektivenPseudomonas-Bakterien und dem Wachstum von Kulturpflanzen. Zentbl. Mikrobiol.147 (1992) 182–191.Google Scholar
  33. 33.
    Höflich, G., and Glante, F., Inokulumanzucht und Inokulation ertragswirksamer VA-Mykorrhizapilze. Zentbl. Mikrobiol.146 (1991) 247–252.Google Scholar
  34. 34.
    Höflich, G., and Ruppel, S., Saatgutpillierung bzw. Inkrustierung zur Verlängerung des Überlebens von Impforganismen am Samen und in der Rhizosphäre. Zentbl. Mikrobiol.145 (1990) 99–106.Google Scholar
  35. 35.
    Höflich, G., and Steinbrenner, K., Effect of agricultural practices on several soil-biological factors. Zentbl. Mikrobiol.43 (1988) 611–620.Google Scholar
  36. 36.
    Höflich, G., and Weise, I., Effektivitätserhöhung derRhizobium-Inokulation bei Erbse durch kombination vonRhizobium leguminosarum biov.Viceae mitR. Leguminosarum biov.trifolii. Zentbl. Mikrobiol.147 (1992) 378–387.Google Scholar
  37. 37.
    Höflich, G., Frielinghaus, M., Roth, R., Noatsch, F., and Blank, B., Einfluss von Bewirtschaftungsmaßnahmen auf mikrobielle Prozesse im Rhizosphärenraum. Arch. Acker-Pflanzerb. Bodenk.37 (1993) 313–323.Google Scholar
  38. 38.
    Höflich, G., Glante, F., Kühn, G., and Hickisch, B., Phytoeffective symbiosis in pea. Zentbl. Mikrobiol.148 (1993) 48–54.Google Scholar
  39. 39.
    Höflich, G., Glante, F., Liste, H.-H., Weise, I., Ruppel, S., and Scholz-Seidel, C., Phytoeffective combination effects of symbiotic and associative microorganisms on legumes. Symbiosis14 (1992) 427–438.Google Scholar
  40. 40.
    Höflich, G., Kühn, G., Meinsen, C., Schuppeneis, R., Schäfer, E., and Stitz, K., Lösungen zur verstärkten Nutzung der biologischen Luftstickstoffbindung in Leguminosengrasgemischen. Arch. Acker Pflanzenb. Bodenk.34 (1990) 701–707.Google Scholar
  41. 41.
    Höflich, G., Wolf, H.-J., and Kühn, G., Erfahrungen und neue Ergebnisse zum Einsatz vonRhizobium-Präparaten zur Erhöhung der biologischen Luftstickstoffbindung und des Estrages bei Leguminosen. Feldwirtschaft30 (1989) 354–355.Google Scholar
  42. 42.
    Höflich, G., Wolf, H.-J., and Rupprich, A., Availability and sterilization of peat as carrier forRhizobium inoculants. Zentbl. Mikrobiol.142 (1987) 581–586.Google Scholar
  43. 43.
    Hornby, D., Biological Control of Soil-Borne-Plant-Pathogens. C·A·B International, Wallingford, U.K. 1990.Google Scholar
  44. 44.
    Jagnow, G., Nitrogenase activity in the rhizosphere of grasses, cereals and non-cultivated plants and the influence of increasing nitrogen fertilizer does on populations and nitrogenase activity of nitrogen fixing bacteria in the rhizosphere of winter wheat and winter barley. Z. Pfl Ernähr. Düng Bodenk.146 (1983) 217–277.Google Scholar
  45. 45.
    Jagnow, G., Höflich, G., and Hoffmann, K.-H., Inoculation of non-symbiotic rhizosphere bacteria: possibilities of increasing and stabilizing yields. Angew. Bot.65 (1991) 97–126.Google Scholar
  46. 46.
    Khan, A. G., The effect of vesicular-arbuscular mycorrhizal associations on growth of cereals: II. Effects on wheat growth. Ann. appl. Biol.80 (1975) 27–36.Google Scholar
  47. 47.
    Kloepper, J. W., Leong, J., Teinze, M., and Schroth, M. N., Enhanced plant growth by siderophores produced by plant growthpromoting rhizobacteria. nature286 (1980) 885–886.CrossRefGoogle Scholar
  48. 48.
    Kreil, W., Simon, W., and Wojahn, F., Futterpflanzenbau: Empfehlungen, Richtwerte, Normative. Ackerfutter 2. Bd. (1983) 255 pp.Google Scholar
  49. 49.
    Lifshitz, R., Kloepper, J. W., Kozlowski, M., Simonson, C., Carlson, J., Tiping, E. M., and Zaleska, I., Growth promotion of canola (rapeseed) seedlings by the strain ofPseudononas putida under gnotobiotic conditions. Can. J. Microbiol.33 (1987) 390–395.Google Scholar
  50. 50.
    Liste, H.-H., Stimulation of symbiosis and growth of lucerne by combined inoculation withRhizobium meliloti andPseudomonas fluorescens. Zentbl. Mikrobiol.148 (1993) 163–176.Google Scholar
  51. 51.
    Liu, Z. L., and Sinclair, J. B., Colonization of soybean roots byBacillus megaterium B 153-2-2. Soil Biochem.25 (1993) 849–855.CrossRefGoogle Scholar
  52. 52.
    Merbach, W. Untersuchungen über Stickstoff und symbiontische N2-Fixierung bei Körnerleguminosen. MLU Halle-Wittenberg Diss. (1982).Google Scholar
  53. 53.
    Milto, N. I., Kluben'kovye bakterii i produktivnost' bobovych rastenij. Nauka Tech.8 (1982) 98 pp.Google Scholar
  54. 54.
    Milus, E. A., and Rothrock, C. S., Rhizosphere colonization of wheat by selected soil bacteria over diverse environments. Can. J. Microbiol.39 (1993) 335–341.Google Scholar
  55. 55.
    Mishustin, E. N. and Cerepkov, N. I., Biological nitrogen in nature and farm production. Role of soil nitrogen-fixing bacteria. Priroda, Mosk. Nauka5 (1981) 28–35.Google Scholar
  56. 56.
    Nicolson, T. H., and Johnston, C., Mycorrhiza in the GramineaeAmmophila arenaria, Agropyron junceiforme, and maize-III.Glomus fasciculatus as the endophyte of pioneer grasses in a maritime sand dune at Tentsmuir Point, Scotland. Trans. Br. mycol. Soc.72 (1979) 261–268.Google Scholar
  57. 57.
    Powell, P., and Dantel, I., Mycorrhizal fungi stimulate uptake of soluble and insoluble phosphate fertilizer from a phosphate deficient soil. New Phytol.80 (1978) 351–358.Google Scholar
  58. 58.
    Roemer, T., Scheffer, F., Lehrbuch des Ackerbaus. 4. Aufl., Verlag Volk and Wissen, Berlin 1953.Google Scholar
  59. 59.
    Sarig, S., Blum, A., and Okon, Y., Improvement of the water status and yield of field-grown sorghum (Sorghum bicolor) by inoculation withAzospirillum brasilense. J. agric. Sci.110 (1988) 271–277.Google Scholar
  60. 60.
    Schilling, G., Plant nutrition with air nitrogen. Wiss. u. Fortschr.30 (1980) 467–471.Google Scholar
  61. 61.
    Singh, C. S., Mass inoculum production of vesicular-arbuscular (VA) mycorrhizae: II. Impact of N2-fixing and P-solubilizing bacterial inoculation on VA-mycorrhiza. Zentbl. Mikrobiol.147 (1992) 503–508.Google Scholar
  62. 62.
    Smith, R. S., Legume inoculant formulation and application. Can. J. Microbiol.38 (1992) 485–492.Google Scholar
  63. 63.
    Sprent, J. J., The Biology of Nitrogen-Fixing Organisms. McGrow-Hill Book Company London 1979.Google Scholar
  64. 64.
    Staley, T. E., Lawrence, E. G., and Nance, E. L., Influence of a plant growth-promoting pseudomonad and vesicular-arbuscular mycorrizal fungus on alfalfa and birdsfoot trefoil growth and nodulation. Biol. Fertil. Soils14 (1992) 175–180.CrossRefGoogle Scholar
  65. 65.
    Steinbrenner, K., and Obenauf, U., Untersuchungen zum Einfluß der Vorfrucht und Vorvorfrucht auf den Ertrag der Wintergeteidearten und den Befall durchGaeumannomyces graminis. Arch. Acker Pflanzenb. Bodenk.30 (1986) 773–779.Google Scholar
  66. 66.
    Stroo, H. F., Elliott, L. F., and Papendick, R. I., Growth survival and toxin production of rootinhibiting pseudomonads on crop residues. Soil Boil. Biochem.20 (1988) 201–207.CrossRefGoogle Scholar
  67. 67.
    Summerfield, R. J., Minchin, F. R., and Steward, K. A., Ndunguru, B. J., Growth, reproductive development and yield of effectively nodulated cowpea plants in contrasting aerial environments. Ann. appl. Biol.90 (1978) 277–291.Google Scholar
  68. 68.
    Thiagarajan, T. R., Ames, R. N., and Ahmad, M. H., Response of cowpea (Vigna unguiculata) to inoculation with co-selected vesicular-arbuscular mycorrihizal fungi andRhizobium strains in the field trials. Can. J. Microbiol.38 (1992) 573–576.Google Scholar
  69. 69.
    Weber, E., George, E., Beck, D. P., Saxena, M. C., and Marschner, H., Vesicular-arbuscular mycorrhiza and phosphorus uptake of chickpea grown in northern Syria. Expl Agric.38 (1992) 433–442.Google Scholar
  70. 70.
    Weber, E., Saxena, M. C., George, E., and Marschner, H., Effect of vesicular-arbuscular mycorrhiza on vegetative growth and harvest index of chickpea grown in northern Syria. Fld Crops Res.32 (1993) 115–128.CrossRefGoogle Scholar
  71. 71.
    Weller, D. M., Biological control of soilborne plant pathogens in the rhizosphere with bacteria. A. Rev. Phytopath.26 (1988) 397–407.Google Scholar
  72. 72.
    Wiehe, W., Höflich, G., Hecht-Buchholz, Ch., Electron microscopic investigations on root colonization ofLupinus albus andPisum sativum with two associative plant growth promoting rhizobacteria,Pseudomonas fluorescens andRhizobium leguminosarum bv.trifolii. Symbiosis 17 (1994) in press.Google Scholar
  73. 73.
    Zimmer, W., Roeben, K., and Bothe, H., An alternative explanation for plant growth promotion by bacteria of the genusAzospirillum. Plant176 (1988) 333–342.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • G. Höflich
    • 1
  • W. Wiehe
    • 1
  • G. Kühn
    • 2
  1. 1.Zentrum für Agrarlandschafts- und LandnutzungsforschungInstitut für Ökophysiologie der PrimärproduktionMünchebergGermany
  2. 2.Institut für BodenforschungMünchebergGermany

Personalised recommendations