Experientia

, Volume 50, Issue 11–12, pp 1002–1011

Hsp70 in mitochondrial biogenesis: From chaperoning nascent polypeptide chains to facilitation of protein degradation

  • R. A. Stuart
  • D. M. Cyr
  • W. Neupert
Multi-Author Reviews

Abstract

The family of hsp70 (70 kilodalton heat shock protein) molecular chaperones plays an essential and diverse role in cellular physiology, Hsp70 proteins appear to elicit their effects by interacting with polypeptides that present domains which exhibit non-native conformations at distinct stages during their life in the cell. In this paper we review work pertaining to the functions of hsp70 proteins in chaperoning mitochondrial protein biogenesis. Hsp70 proteins function in protein synthesis, protein translocation across mitochondrial membranes, protein folding and finally the delivery of misfolded proteins to proteolytic enzymes in the mitochondrial matrix.

Key words

Mitochondrial biogenesis nascent polypeptide chains protein translocation matrix-ATP mitochondrial hsp70 molecular chaperones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ang, D., Liberek, K., Skowyra, D., Zylicz, M., and Georgopoulos, C., Biological role and regulation of the universally conserved heat shock proteins. J. biol. Chem.266 (1991) 24233–24236.PubMedGoogle Scholar
  2. 2.
    Atencio, D.P., and Yaffe, M.P., Mas5, a yeast homolog of DnaJ involved in mitochondrial protein import. Molec. cell. Biol.12 (1992) 283–291.PubMedGoogle Scholar
  3. 3.
    Beckman, R.P., Mizzen, L., and Welch, W., Interaction of hsp70 with newly synthesized proteins: Implications for protein folding and assembly. Science248 (1990) 850–856.PubMedGoogle Scholar
  4. 4.
    Borst, P., and Grivell, L.A., The mitochondrial genome of yeast. Cell15 (1978) 705–723.PubMedGoogle Scholar
  5. 5.
    Caplan, A.J., and Douglas, M.G., Characterization of YDJ1: A yeast homolog of theE. coli dnaJ gene. J. Cell Biol.114 (1991) 609–622.PubMedGoogle Scholar
  6. 6.
    Caplan, A.J., Cyr, D.M., and Douglas, M.G., YDJ1 facilitates polypeptide translocation across different intercellular membranes by a conserved mechanism. Cell71 (1992) 1143–1155.PubMedGoogle Scholar
  7. 7.
    Cheng, M.Y., Hartl, F.-U., Martin, J., Pollock, R.A., Kalusek, F., Neupert, W., Hallberg, E.M., Hallberg, R.L., and Horwich, A.L., Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature337 (1989) 620–625.PubMedGoogle Scholar
  8. 8.
    Chirico, W.J., Dissociation of complexes between 70 Kda stress proteins and presecretory proteins is facilitated by a cytosolic factor. Biochem. biophys. Res. Commun.189 (1992) 1150–1156.PubMedGoogle Scholar
  9. 9.
    Craig, E.A., Baxter, B.K., Becker, J., Halladay, J., and Zeigelhoffer, T., Cytosolic hsp70s ofSaccharomyces cerevisiae: Roles in protein synthesis, protein translocation, proteolysis and regulation, in: The Biology of Heat Shock Proteins and Molecular Chaperones, pp. 31–52. Eds R.I. Morimoto, A. Tissieres and C. Georgopoulos. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1994.Google Scholar
  10. 10.
    Craig, E.A., Kramer, S., Shilling, J., Werner-Washburne, M., Holmes, S., Kosic-Smither, J., and Nicolet, C.M., SSCl, an essential member of theS. cerevisiae HSP70 multigene family, encodes a mitochondrial protein. Molec. cell. Biol.9 (1989) 3000–3008.PubMedGoogle Scholar
  11. 11.
    Cyr, D.M., and Douglas, M.G., Differential regulation of hsp70 subfamilies by the eukaryotic DnaJ homolog YDJ1. J. biol. Chem.269 (1994) 9798–9804.PubMedGoogle Scholar
  12. 12.
    Cyr, D.M., Lu, X., and Douglas, M.G., Regulation of eukaryotic hsp70 function by a DnaJ homolog. J. biol. Chem.267 (1992) 20927–20931.PubMedGoogle Scholar
  13. 13.
    Cyr, D.M., Langer, T., and Douglas, D.M., DnaJ-like proteins: molecular chaperones and specific regulators of hsp70. Trends biochem. Sci.19 (1994) 176–181.PubMedGoogle Scholar
  14. 14.
    Cyr, D.M., Stuart, R.A., and Neupert, W., A matrix ATP requirement for presequence translocation across the inner membrane of mitochondria. J. biol. Chem.268 (1993) 23751–23754.PubMedGoogle Scholar
  15. 15.
    Deshaies, R.B., Koch, B., Werner-Washburne, M., Craig, E.A., and Schekman, R., A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides, Nature332 (1988) 800–805.PubMedGoogle Scholar
  16. 16.
    Dice, J.F., Agarraberes, F., Kirven-Brooks, M., Terlecky, L.J., and Terlecky, S.R., Heat shock 70-Kd proteins and lysosomal proteolysis, in: The Biology of Heat Shock Proteins and Molecular Chaperones, pp. 137–152. Eds R.I. Morimoto, A. Tissieres and C. Georgopoulos. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1994.Google Scholar
  17. 17.
    Eilers, M., and Schatz, G., Binding of a specific ligand inhibits import of a purified precursor protein into mitocondria. Nature322 (1986) 228–232.PubMedGoogle Scholar
  18. 18.
    Gambill, B.D., Voos, W., Kang, P.J., Miao, B., Langer, T., Craig, E.A., and Pfanner, N., A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol.123 (1993) 119–126.PubMedGoogle Scholar
  19. 19.
    Gething, M.-J., and Sambrook, J., Protein folding in the cell. Nature355 (1992) 33–45.PubMedGoogle Scholar
  20. 20.
    Glick, B.S., Wachter, C., Reid, G.A., and Schatz, G., Import of cytochromeb 2 to the mitochondrial imtermembrane space—the tightly folded heme-binding domain makes import dependent upon matrix ATP. Protein Sci.2 (1993) 1901–1917.PubMedGoogle Scholar
  21. 21.
    Groot, G.S.P., Mason, T.L., and van Harten-Loosbroek, N., Varl is associated with the small ribosomal subunit of mitochondrial ribosomes in yeast. Molec. gen. Genet.174 (1979) 339–342.PubMedGoogle Scholar
  22. 22.
    Hadikusumo, R.G., Meltzer, S., Choo, W.M., Jean-François, M.J., Linnane, A.W., and Marzuki, S., The definition of mitochondrial H+ATPase assembly defects in mit-mutants ofSaccaromyces cerevisiae with a monoclonal antibody to the enzyme complex as an assembly probe. Biochim. biophys. Acta933 (1988) 212–222.PubMedGoogle Scholar
  23. 23.
    Hartl, F.-U., Holdan, R., and Langer, T., Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends biochem. Sci.19 (1994) 20–25.PubMedGoogle Scholar
  24. 23a.
    Hermann, J., Stuart, R.A., Craig, E.A., and Neupert, W., Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. J. Cell Biol.127 (1994), in press.Google Scholar
  25. 24.
    Höhfeld, J., and Hartl, F.-U., Requirement of the chaperonin cofactor Hsp10 for protein sorting in yeast mitochondria. J. Cell Biol. (1994), in press.Google Scholar
  26. 25.
    Hendrick, J.P., and Hartl, F.-U., Molecular chaperone functions of heat shock proteins. A. Rev. Biochem.62 (1993) 349–384.Google Scholar
  27. 26.
    Hwang, S.T., and Schatz, G., Translocation of proteins across the mitochondrial inner membrane, but not into the outer membrane, requires nucleoside triphosphates in the matrix. Proc. natl Acad. Sci. USA86 (1989) 8432–8436.PubMedGoogle Scholar
  28. 27.
    Ikeda, E., Yoshida, S., Mitsuzawa, H., Uno, I., and Toh-e, A., YGE1 is a yeast homologue ofEscherichia coli grpE and is required for maintenance of mitochondrial functions. FEBS Lett.39 (1994) 265–268.Google Scholar
  29. 28.
    Kang, P.-J., Ostermann, J., Shilling, J., Neupert, W., Craig, E.A., and Pfanner, N., Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature, Lond.348 (1990) 137–143.Google Scholar
  30. 29.
    Kiebler, M., Becker, K., Pfanner, N., and Neupert, W., Mitochondrial protein import: specific recognition and membrane translocation of preproteins. J. Membrane Biol.135 (1993) 191–207.Google Scholar
  31. 30.
    Kutejová, E., Durcová, G., Surofková, E., and Kuzela, S., Yeast mitochondrial ATP-dependent protease: purification and comparison with the homologous rat enzyme and the bacterial ATP-dependent protease La. FEBS Lett.329 (1993) 47–50.PubMedGoogle Scholar
  32. 31.
    Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M.K., and Hartl, F.-U., Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature, Lond.356 (1992) 683–689.Google Scholar
  33. 32.
    Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C., and Zylicz, M.,Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. natl Acad. Sci. USA88 (1991) 2874–2878.PubMedGoogle Scholar
  34. 33.
    Lindquist, S., and Craig, E.A., The heat shock proteins. A. Rev. Genet.22 (1988) 631–677.Google Scholar
  35. 34.
    Manning-Krieg, U.C., Scherer, P.E., and Schatz, G., Sequential action of mitochondrial chaperones in protein import into the matrix. EMBO J.10 (1991) 3273–3280.PubMedGoogle Scholar
  36. 35.
    Nelson, R.J., Zeigelhoffer, T., Nicolet, C., Werner-Washburne, M., and Craig, E.A., The translation machinery and seventy kilodalton heat shock protein cooperate in protein synthesis. Cell71 (1992) 97–105.PubMedGoogle Scholar
  37. 36.
    Neupert, W., Hartl, F.-U., Craig, E.A., and Pfanner, N., How do polypeptides cross mitochondrial membranes? Cell63 (1990) 447–450.PubMedGoogle Scholar
  38. 37.
    Ostermann, J., Horwich, A.L., Neupert, W., and Hartl, F.-U., Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature341 (1989) 125–130.PubMedGoogle Scholar
  39. 38.
    Pelham, H.R.B., Speculations on the function of major heat shock and glucose-regulated proteins. Cell46 (1986) 959–961.PubMedGoogle Scholar
  40. 39.
    Rassow, J., Hartl, F.-U., Guiard, B., Pfanner, N., and Neupert, W., Polypetides traverse the mitochondrial envelope in an extended state. FEBS Lett.275 (1990) 190–194.PubMedGoogle Scholar
  41. 40.
    Rospert, S., Junne, T., Glick, B.S., and Schatz, G., Cloning and disruption of the gene encoding yeast mitochondrial chaperonin 10, the homolog ofE. coli groES. FEBS Lett.335 (1993) 358–360.PubMedGoogle Scholar
  42. 41.
    Rowley, N., Prip-Buus, C., Westermann, B., Brown, C., Schwarz, E., Barrel, B., and Neupert, W., Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding, Cell77 (1994) 249–259.PubMedGoogle Scholar
  43. 42.
    Schleyer, M., and Neupert, W., Transport of proteins into mitochondria: translocational intermediates spanning contact sites between outer and inner membranes. Cell43 (1985) 339–350.PubMedGoogle Scholar
  44. 43.
    Stuart, R.A., Gruhler, A., van der Klei, I.J., Guiard, B., Koll, H., and Neupert, W., The requirement of matrix ATP for the import of precursor proteins into the mitochondrial matrix and intermembrane space. Eur. J. Biochem.220 (1994a) 9–18.PubMedGoogle Scholar
  45. 44.
    Stuart, R.A., Cyr, D.M., Craig, E.A., and Neupert, W., Mitochondrial molecular chaperones: their role in protein translocation. Trends biochem. Sci.19 (1994) 87–92.PubMedGoogle Scholar
  46. 45.
    Suzuki, C.K., Suda, K., Wang, N., and Schatz, G., Requirement of the yeast gene LON in mitochondrial proteolysis and maintenance of respiration. Science264 (1994) 273–276.PubMedGoogle Scholar
  47. 46.
    Terpstra, P., and Butow, R.A., The role of varl in the assembly of yeast mitochondrial ribosomes. J. Biochem. Biophys.254 (1979) 12662–12669.Google Scholar
  48. 47.
    Tzagoloff, A., and Myers, A.M., Genetics of mitochondrial biogenesis. A. Rev. Biochem.55 (1986) 249–285.Google Scholar
  49. 48.
    Tzagoloff, A., and Dieckmann, C.L., PET genes ofSaccharomyces cerevisiae. Microbiol. Rev.54 (1990) 211–225.PubMedGoogle Scholar
  50. 49.
    van Dyck, L., Pearce, D.A., and Sherman, F., PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeastSaccharomyces cerevisiae. J. biol. Chem.269 (1994) 238–242.PubMedGoogle Scholar
  51. 50.
    Voos, W., Gambill, D.B., Guiard, B., Pfanner, N., and Craig, E.A., Presequence and mature portion of preproteins strongly influence the dependence of mitochondrial protein import on the heat shock 70 protein in the matrix. J. Cell Biol.123 (1993) 109–118.PubMedGoogle Scholar
  52. 51.
    Wang, N., Gottesman, S., Willingham, M.C., Gottesman, M.M., and Maruizi, M.R., A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc. natl Acad. Sci. USA90 (1993) 11247–11251.PubMedGoogle Scholar
  53. 52.
    Wachter, C., Schatz, G., and Glick, B.S., Protein import into mitochondria: the requirement for external ATP is precursorspecific whereas intramitochondrial ATP is universally needed for translocation into the matrix. Molec. cell. Biol.5 (1994) in press.Google Scholar
  54. 53.
    Wagner, I., Arlt, H., van Dyck, L., Langer, T., and Neupert, W., Molecular chaperones co-operate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J.13 (1994), in press.Google Scholar
  55. 54.
    Xia, Z., and Mathews, F.S., Molecular structure of flavocytochrome b2 at 2.4 A resolution. J. molec. Biol.212 (1990) 837–863.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • R. A. Stuart
    • 1
  • D. M. Cyr
    • 1
  • W. Neupert
    • 1
  1. 1.Institut für Physiologische Chemie der Universität MünchenMünchen(Germany)

Personalised recommendations