Advertisement

Experientia

, Volume 52, Issue 1, pp 88–92 | Cite as

Synthesis and cannabinoid receptor binding activity of conjugated triene anandamide, a novel eicosanoid

  • M. L. Wise
  • K. Soderstrom
  • T. F. Murray
  • W. H. Gerwick
Article

Abstract

A polyenoic fatty-acid isomerase (PFI) from a red marine alga was used to convert anandamide (5Z,8Z,11Z,14Z-eicosatetraenoyl-N-ethanolamide) to the 5Z,7E,9E,14Z-eicosatetraenoyl-N-ethanolamide isomer. This novel eicosanoid, termed conjugated triene anandamide (CTA), was assessed for its ability to bind to the cannabinoid receptor in rat brain membrane preparations. CTA is a high affinity cannabimimetic substance whose novel structure provides new insight into structure-activity relationships of cannabinoid receptor ligands. These experiments illustrate the utility of enzymes isolated from marine organisms in the development of pharmacological probes.

Key words

Cannabinoid receptor polyenoic fatty-acid isomerase marine enzyme anandamide red algae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Devane, D. A., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griffin, G., Gibson, D., Mandelbaum, A., Etinger, A., and Mechoulam, R., Science258 (1992) 1946.PubMedGoogle Scholar
  2. 2.
    Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C., and Bonner, T. I., Nature346 (1990) 561.PubMedGoogle Scholar
  3. 3.
    Wise, M. L., Hamberg, M., and Gerwick, W. H., Biochemistry33 (1994) 15223.PubMedGoogle Scholar
  4. 4.
    Evershed, R. P. in: Handbook of Derivatives for Chromatography, 2nd edn p. 59. Eds K. Blau and J. Halket, John Wiley & Sons, Chichester (England) 1993.Google Scholar
  5. 5.
    Melvin, L. S., Milne, G. M., Johnson, M. R., Subramaniam, B., Wilken, G. H., and Howlett, A. C., Molec. Pharm.44 (1993) 1008.PubMedGoogle Scholar
  6. 6.
    Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J., J. biol. Chem.193 (1951) 265.PubMedGoogle Scholar
  7. 7.
    Lopez, A., and Gerwick, W. H., Lipids22 (1987) 190.PubMedGoogle Scholar
  8. 8.
    Wolff, I. A., and Miwa, T. K., J. Am. Oil chem. Soc.42 (1965) 208.Google Scholar
  9. 9.
    Deutsch, D. G., and Chin, S. A., Biochem. Pharmac.46 (1993) 791.Google Scholar
  10. 10.
    Childers, S. R., Sexton, T., and Roy, M. B., Biochem. Pharmac.47 (1994) 711.Google Scholar
  11. 11.
    Pinto, J. C., Potie, F., Rice, K. C., Boring, D., Johnson, M. R., Evans, D. M., Wilken, G. H., Cantrell, C. H., and Howlett, A. C., Molec. Pharmac.46 (1994) 516.Google Scholar
  12. 12.
    Felder, C. C., Briley, E. M., Axelrod, J., Simpson, J. T., Mackie, K., and Devane, W. A., Proc. natl Acad. Sci.90 (1993) 7656.PubMedGoogle Scholar
  13. 13.
    Hanus, L., Gopher, A., Almog, S., and Mechoulam, R., J. med. Chem.36 (1993) 3032.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1996

Authors and Affiliations

  • M. L. Wise
    • 1
  • K. Soderstrom
    • 2
  • T. F. Murray
    • 2
  • W. H. Gerwick
    • 1
    • 2
  1. 1.Department of Biochemistry and BiophysicsOregon State UniversityCorvallisUSA
  2. 2.College of PharmacyOregon State UniversityCorvallisUSA

Personalised recommendations