, Volume 52, Issue 1, pp 14–24 | Cite as

Butterflies and ants: The communicative domain

  • K. Fiedler
  • B. Hölldobler
  • P. Seufert


Associations with ants, termed myrmecophily, are widespread in the butterfly family Lycaenidae and range from mere co-existence to more or less specific mutualistic or even parasitic interactions. Secretions of specialized epidermal glands are crucial for mediating the interactions. Transfer of nutrients (carbohydrates, amino acids) from butterfly larvae to ants plays a major role, but manipulative communication with the help of odour signals is also involved. By means of myrmecophily, lycaenid butterflies largely escape ant predation, and certain species gain protection through attendant ants or achieve developmental benefits from ant-attendance. Benefits to the ants range from minimal to substantial food rewards. While most lycaenid species maintain facultative relationships with a variety of ant genera, highly specific and obligatory associations have convergently evolved in a number of butterfly lineages. As a corollary, communication systems are largely unspecific in the former, but may be highly specialized in the latter. The sophisticated communication between obligate myrmecophiles and their host ants is tightly connected with the evolutionary rise of specialized life-cycles and thus is a source of augmenting diversity within the butterflies.

Key words

Lycaenidae Formicidae symbiosis mutualism parasitism communication ecology evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackery, P. R., Biocontrol potential of African lycaenid butterflies entomophagous on Homoptera. J. Afr. Zool.104 (1990) 581–591.Google Scholar
  2. 2.
    Agosti, D., Revision of the Oriental ant genusCladomyrma, with an outline of the higher classification of the Formicinae (Hymenoptera: Formicidae). Syst. Ent.16 (1991) 293–310.Google Scholar
  3. 3.
    Atsatt, P. R., Lycaenid butterflies and ants: selection for enemy-free space. Am. Nat.118 (1981) 638–654.Google Scholar
  4. 4.
    Atsatt, P. R., Ant-dependent food plant selection of the mistletoe butterflyOgyris amaryllis (Lycaenidae). Oecologia48 (1981) 60–63.Google Scholar
  5. 5.
    Ballmer, G. R., and Pratt G. F., Quantification of ant attendance (myrmecophily) of lycaenid larvae. J. Res. Lepid.30 (1992) 95–112.Google Scholar
  6. 6.
    Baylis, M., and Pierce, N. E., The effects of ant mutualism on the foraging and diet of lycaenid caterpillars, in: Caterpillars — ecological and evolutionary constraints on foraging, pp. 404–421. Eds. N. E. Stamp and T. M. Casey. Chapman and Hall, New York/London 1993.Google Scholar
  7. 7.
    Burghardt, F., Untersuchungen zum Einfluß der Futterqualität auf die Myrmekophilie von Bläulingsraupen. Diplom thesis, University of Würzburg, 1994.Google Scholar
  8. 8.
    Callaghan, C. J., Notes on the biology of a myrmecophilous African lycaenid,Aphnaeus adamsi Stempffer (Lepidoptera, Lycaenidae). Bull. Soc. ent. Fr.97 (1993) 339–342.Google Scholar
  9. 9.
    Cammaerts, R., Stimuli inducing the regurgitation of the workers ofLasius flavus (Formicidae) upon the myrmecophilous beetleClaviger testaceus (Pselaphidae). Behav. Proc.28 (1992) 81–96.Google Scholar
  10. 10.
    Cammaerts, R., and Cammaerts, M.-C., Response of the myrmecophilous beetleEdaphopaussus favieri (Carabidae, Paussinae) to 3-ethyl-2,5-dimethylpyrazine, the only known component of its host trail pheromone, in: Biology and evolution of social insects, pp. 211–216. Ed. J. Billen Leuven University Press, Leuven 1992.Google Scholar
  11. 11.
    Cammaerts, R., Detrain, C., and Cammaerts, M.-C., Host trail following by the myrmecophilous beetleEdaphopaussus favieri (Fairmaire) (Carabidae Paussinae). Insect Soc.37 (1990) 200–211.Google Scholar
  12. 12.
    Claassens, A. J. M., and Dickson, C. G. C., A study of the myrmecophilous behaviour of the immature stages ofAloeides thyra (L.) (Lep: Lycaenidae) with special reference to the function of the retractile tubercles and with additional notes on the general biology of the species. Ent. Rec. J. Var.89 (1977) 225–231.Google Scholar
  13. 13.
    Cottrell, C. B., Aphytophagy in butterflies: its relationship to myrmecophily. Zool. J. Linn. Soc.79 (1984) 1–57.Google Scholar
  14. 14.
    Cottrell, C. B., The extraordinaryLiphyra butterfly. Transv. Mus. Bull.22 (1987) 5–12.Google Scholar
  15. 15.
    Cushman, J. H., Rashbrook V. K., and Beattie, A. J., Assessing benefits to both participants in a lycaenid-ant association. Ecology75 (1994) 1031–1041.Google Scholar
  16. 16.
    Dejean, A., Nkongmeneck, B., Corbara, B., and Djieto-Lordon, C., Impact des fourmis arboricoles sur une pullulation d'Achaea catocaloides (Lepidoptera, Noctuidae) dans des plantations de cacaoyers du Cameroun, et étude de leurs Homoptères associés. Act. Oecol.12 (1991) 471–488.Google Scholar
  17. 17.
    DeVries, P. J., The larval ant-organs ofThisbe irenea (Lepidoptera: Riodinidae) and their effects upon attending ants. Zool. J. Linn. Soc.94 (1988) 379–393.Google Scholar
  18. 18.
    DeVries, P. J., Enhancement of symbioses between butterfly caterpillars and ants by vibrational communication. Science248 (1990) 1104–1106.Google Scholar
  19. 19.
    DeVries, P. J., Call production by myrmecophilous riodinid and lycaenid butterfly caterpillars (Lepidoptera): morphological, acoustical, functional, and evolutionary patterns. Am. Mus. Novit3025 (1991) 1–23.Google Scholar
  20. 20.
    DeVries, P. J., Evolutionary and ecological patterns in myrmecophilous riodinid butterflies, in: Ant-plant interactions, pp. 143–156. Eds. C. R. Huxley and D. F. Cutler, Oxford University Press, Oxford 1991.Google Scholar
  21. 21.
    DeVries, P. J., Mutualism betweenThisbe irenea butterflies and ants, and the role of ant ecology in the evolution of larval-ant associations. Biol. J. Linn. Soc.43 (1991) 179–195.Google Scholar
  22. 22.
    DeVries, P. J., Thomas, J. A., and Cocroft, R., A comparison of acoustical signals betweenMaculinea butterfly caterpillars and their obligate host ant species. Biol. J. Linn. Soc.49 (1993) 229–238.Google Scholar
  23. 23.
    Downey, J. C., Thrips utilize exudations of Lycaenidae. Ent. News76 (1965) 25–27.Google Scholar
  24. 24.
    Downey, J. C., and Allyn, A. C., Butterfly ultrastructure. 1. Sound production and associated abdominal structures in pupae of Lycaenidae and Riodinidae. Bull. Allyn Mus.14 (1973) 1–47.Google Scholar
  25. 25.
    Downey, J. C., and Allyn, A. C., Sounds produced in pupae of Lycaenidae. Bull. Allyn Mus.48 (1978) 1–14.Google Scholar
  26. 26.
    Ehrhardt, R., Über die Biologie und Histologie der myrmekophilen Organe vonLycaena orion. Ber. naturf. Ges. Freiburg20 (1914) 90–98.Google Scholar
  27. 27.
    Elfferich, N. W., Enige opmerkingen over de biologie vanPlebejus argus L. (Lep., Lycaenidae). Entomol. Ber. Amsterdam25 (1965) 26–31.Google Scholar
  28. 28.
    Elmes, G. W., Thomas, J. A., Hammarsted, O., Munguira, M. L., Martin, J., and van der Made, J. G., Differences in host-ant specificity between Spanish, Dutch and Swedish populations of the endangered butterfly,Maculinea alcon (Denis et Schiff.) (Lepidoptera). Memorabilia Zool.48 (1994 55–68.Google Scholar
  29. 29.
    Elmes, G. W., Thomas, J. A., and Wardlaw, J. C., Larvae ofMaculinea rebeli, a large-blue butterfly and theirMyrmica host ants: wild adoption and behaviour in ant-nests. J. Zool. Lond.223 (1991) 447–460.Google Scholar
  30. 30.
    Elmes, G. W., Wardlaw, J. C., and Thomas, J. A., Larvae ofMaculinea rebeli, a large-blue butterfly and theirMyrmica host ants: patterns of caterpillar growth and survival. J. Zool. Lond.224 (1991) 79–92.Google Scholar
  31. 31.
    Farquharson, C. O., Five years' observations (1914–1918) on the bionomics of Southern Nigerian insects, chiefly directed to the investigation of lycaenid life-histories and to the relation of Lycaenidae, Diptera, and other insects to ants (ed. E. B. Poulton). Trans. ent. Soc. Lond.1921 (1922) 319–448.Google Scholar
  32. 32.
    Fiedler, K., Die Beziehungen von Bläulingspuppen (Lepidoptera: Lycaenidae) zu Ameisen (Hymenoptera: Formicidae). Nachr. ent. Ver. Apollo Frankfurt, N. F.9 (1988) 33–58.Google Scholar
  33. 33.
    Fiedler, K., New information on the biology ofMaculinea nausithous andM. teleius (Lepidoptera: Lycaenidae). Nota lepid.12 (1990) 246–256.Google Scholar
  34. 34.
    Fiedler, K., Effects of larval diet on the myrmecophilous qualities ofPolyommatus icarus caterpillars (Lepidoptera: Lycaenidae). Oecologia83 (1990) 284–287.Google Scholar
  35. 35.
    Fiedler, K., Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonner zool. Monogr.31 (1991) 1–210.Google Scholar
  36. 36.
    Fiedler, K., Lycaenid butterflies and plants: is myrmecophily associated with amplified hostplant diversity? Ecol. Ent.19 (1994) 79–82.Google Scholar
  37. 37.
    Fiedler, K., Lycaenid butterflies and plants: is myrmecophily associated with particular hostplant prefenreces. Ethol. Ecol. Evol.7 (1995) 107–132.Google Scholar
  38. 38.
    Fiedler, K., Life-history patterns of myrmecophilous butterflies and other insects: their implications on tropical species diversity, in: Proceedings of the international symposium on biodiversity and systematics in tropical ecosystems, in press Ed. H. Ulrich, Museum A. Koenig, Bonn 1995.Google Scholar
  39. 39.
    Fiedler, K., and Hagemann, D. The influence of larval age and ant number on myrmecophilous interactions of the African Grass Blue butterfly,Zizeeria knysna (Lepidoptera: Lycaenidae). J. Res. Lepid.31 (1995) in press.Google Scholar
  40. 40.
    Fiedler, K., and Hölldobler, B., Ants andPolyommatus icarus immatures (Lycaenidae) — sex-related developmental benefits and costs of ant attendance. Oecologia91 (1992) 468–473.Google Scholar
  41. 41.
    Fiedler, K., and Maschwitz, U., Functional analysis of the myrmecophilous relationships between ants (Hymenoptera: Formicidae) and lycaenids (Lepidoptera: Lycaenidae). II. Lycaenid larvae as trophobiotic partners of ants — a quantitative approach. Oecologia75 (1988) 204–206.Google Scholar
  42. 42.
    Fiedler, K., and Maschwitz, U., Functional analysis of the myrmecophilous relationships between ants (Hymenoptera: Formicidae) and lycaenids (Lepidoptera: Lycaenidae). III. New aspects of the function of the retractile tentacular organs of lycaenid larvae. Zool. Beitr. Berlin, N. F.31 (1988) 409–416.Google Scholar
  43. 43.
    Fiedler, K., and Maschwitz, U., Functional analysis of the myrmecophilous relationships between ants (Hymenoptera: Formicidae) and lycaenids (Lepidoptera: Lycaenidae). I. Release of food recruitment in ants by lycaenid larvae and pupae. Ethology80 (1989) 71–80.Google Scholar
  44. 44.
    Fiedler, K., and Maschwitz, U., The symbiosis between the weaver ant,Oecophylla smaragdina, andAnthene emolus, an obligate myrmecophilous lycaenid butterfly. J. nat. Hist.23 (1989) 833–846.Google Scholar
  45. 45.
    Fiedler, K., and Maschwitz, U., Adult myrmecophily in butterflies: the role of the antAnoplolepis longipes in the feeding and oviposition behaviour ofAllotinus unicolor. Tyô to Ga40 (1989) 241–251.Google Scholar
  46. 46.
    Fiedler, K., and Saam, C., Does ant-attendance influence development in 5 European Lycaenidae butterfly species? (Lepidoptera). Nota lepid.17 (1994) 5–24.Google Scholar
  47. 47.
    Fiedler, K., Schurian, K. G., and Hahn, M., The life-history and myrmecophily ofPolyommatus candalus (Herrich-Schäffer) from Turkey (Lep., Lycaenidae). Linneana Belg.14 (1994) 315–332.Google Scholar
  48. 48.
    Fiedler, K., Seufert, P., Pierce, N. E., Pearson, J. G., and Baumgarten, H.-T., Exploitation of lycaenid-ant mutualisms by braconid parasitoids. J. Res. Lepid. (in press).Google Scholar
  49. 49.
    Gilbert, L. E., Adult resources in butterflies: African lycaenidMegalopalpus feeds on larval nectary. Biotropica8 (1976) 282–283.Google Scholar
  50. 50.
    Henning, S. F., Biological groups within the Lycaenidae (Lepidoptera). J. Entomol. Soc. Sth. Afr.46 (1983) 65–85.Google Scholar
  51. 51.
    Henning, S. F., Chemical communication between lycaenid larvae (Lepidoptera: Lycaenidae) and ants (Hymenoptera: Formicidae). J. entomol. Soc. sth. Afr.46 (1983) 341–366.Google Scholar
  52. 52.
    Heppner, J. B., Faunal regions and the diversity of Lepidoptera. Trop. Lepid.2 Suppl.1 (1991) 1–85.Google Scholar
  53. 53.
    Hill, C. J., The myrmecophilous organs ofArhopala madytus Fruhstorfer (Lepidoptera: Lycaenidae). J. Aust. entomol. Soc.32 (1993) 283–288.Google Scholar
  54. 54.
    Hinton, H. E., Myrmecophilous Lycaenidae and other Lepidoptera — a summary. Proc. Trans. sth. Lond., entomol. nat. Hist. Soc.1949–50 (1951) 111–175.Google Scholar
  55. 55.
    Hochberg, M. E., Clarke, R. T., Elmes, G. W., and Thomas, J. A., Population dynamic consequences of direct and indirect interactions involving a large blue butterfly and its plant and red ant hosts. J. Anim. Ecol.63 (1994) 375–391.Google Scholar
  56. 56.
    Hochberg, M., Thomas, J. A., and Elmes, G. W., A modelling study of the population dynamics of a large blue butterfly,Maculinea rebeli, a parasite of red ant ant nests. J. Anim. Ecol.61 (1992) 397–409.Google Scholar
  57. 57.
    Hölldobler, B., Zur Physiologie der Gast-Wirt-Beziehungen (Myrmecophilie) bei Ameisen. I. Das. Gastverhältnis derAtemeles-undLomechusa-Larven (Col. Staphylinidae) zuFormica (Hym. Formicidae). Z. vergl. Physiol.56 (1967) 1–21.Google Scholar
  58. 58.
    Hölldobler, B., Orientierungsmechanismen des AmeisengastesAtemeles (Coleoptera, Staphylinidae) bei der Wirtssuche. Zool. Anz. Suppl.33 (1969) 580–585.Google Scholar
  59. 59.
    Hölldobler, B., Host finding by oder in the myrmecophilic beetleAtemeles publicollis Bris. (Staphylinidae). Science166 (1969) 757–758.Google Scholar
  60. 60.
    Hölldobler, B., Zur Physiologie der Gast-Wirt-Beziehungen (Myrmecophilie) bei Ameisen. II. Das Gastverhältnis des imaginalenAtemeles pubicollis Bris. (Col. Staphylinidae) zuMyrmica andFormica (Hym. Formicidae). Z. vergl. Physiol.66 (1970) 215–250.Google Scholar
  61. 61.
    Hölldobler, B., Communication between ants and their guests. Scient. Am.1971 (March) (1971) 86–93.Google Scholar
  62. 62.
    Hölldobler, B., and Wilson, E. O., The ants. Harvard University Press 1990.Google Scholar
  63. 63.
    Howard, R. W., Akre, R. D., and Garnett, W. B., Chemical mimicry in an obligate predator of carpenter ants (Hymenoptera: Formicidae). Ann. ent. Soc. Am.83 (1990) 607–616.Google Scholar
  64. 64.
    Howard, R. W., Stanley-Samuelson, D. W., and Akre, R. D., Biosynthesis and chemical mimicry of cuticular hydrocarbons from the obligate predator,Microdon albicomatus Novak (Diptera: Syrphidae) and its ant prey,Myrmica incompleta Provancher (Hymenoptera: Formicidae). J. Kansas ent. Soc.63 (1990) 437–443.Google Scholar
  65. 65.
    Hummel, V., Untersuchungen zum Einfluß des Dauer einer Ameisenassoziation auf die Sekretabgabe und andere Myrmekophilieparameter der Raupen des BläulingsAricia agestis (Lepidoptera: Lycaenidae). Diplom thesis, University of Würzburg, 1994.Google Scholar
  66. 66.
    Ito, F., and Higashi, S., Variance of ant effects on the different life forms of moth caterpillars. J. Anim. Ecol.60 (1991) 327–334.Google Scholar
  67. 67.
    Jackson, T. H. E., The early stages of some African Lycaenidae (Lepidoptera), with an account of their larval habits. Trans. R. ent. Soc. Lond.86 (1937) 201–238.Google Scholar
  68. 68.
    Jones, R. E., Ants, parasitoids, and the cabbage butterflyPieris rapae. J. Anim. Ecol.56 (1987) 739–749.Google Scholar
  69. 69.
    Jordano, D., and Thomas, C. D., Specificity of an ant-lycaenid interaction. Oecologia91 (1992) 431–438.Google Scholar
  70. 70.
    Jutzeler, D., Weibchen der BläulingsartLycaeides idas L. riechen ihre Wirtsameisen (Lepidoptera: Lycaenidae). Mitt. ent. Ges. Basel. N. F.39 (1989): 95–118.Google Scholar
  71. 71.
    Jutzeler, D., Kann das Weibchen vonPlebejus argus (Linnaeus, 1761) Ameisen riechen? (Lepidoptera: Lycaenidae). Mitt. ent. Ges. Basel, N. F.39 (1989) 150–159.Google Scholar
  72. 72.
    Kistner, D. H., The social insects' bestiary, in: Social insects, vol. 3, pp. 1–244. Ed. H. R. Hermann. Academic Press, New York 1982.Google Scholar
  73. 73.
    Kitching, R. L., and Luke, B., The myrmecophilous organs of the larvae of some Brithis Lycaenidae (Lepidoptera): a comparative study. J. nat. Hist.19 (1985) 259–276.Google Scholar
  74. 74.
    Laine, K., and Niemelä, P., The influence of ants on the survival of mountain birches during anOporinia autumnata (Lep., Geometridae) outbreak. Oecologia47 (1980) 39–42.Google Scholar
  75. 75.
    Lamborn, W. A., On the relationship between certain West African insects, especially ants, Lycaenidae and Homoptera. Trans. ent. Soc. Lond.1913 (1914) 436–524.Google Scholar
  76. 76.
    Larsen, T. B., and Pittaway, A. R., Notes on the ecology, biology and taxonomy ofApharitis acamas (Klug) (Lepidoptera: Lycaenidae). Ent. Gaz.33 (1982) 163–168.Google Scholar
  77. 77.
    Leimar, O., and Axén, A., Strategic behaviour in an interspecific mutualism: interactions between lycaenid larvae and ants. Anim. Behav.46 (1993) 1177–1182.Google Scholar
  78. 78.
    Mahdi, T., and Whittaker, J. B., Do birch trees (Betula pendula) grow better if foraged by wood ants?. J. Anim. Ecol.62 (1993) 101–116.Google Scholar
  79. 79.
    Malicky, H., Versuch einer Analyse der ökologischen Beziehungen zwischen Lycaeniden (Lepidoptera) und Formiciden (Hymenoptera). Tijdschr. Ent.112 (1969) 213–298.Google Scholar
  80. 80.
    Malicky, H., Unterschiede im Angriffsverhalten vonFormica-Arten (Hymenoptera: Formicidae) gegenüber Lycaenidenraupen (Lepidoptera). Insect Soc.17 (1970) 121–124.Google Scholar
  81. 81.
    Maschwitz, U., Fiala, B., Moog, J., and Saw, L. G., Two new myrmecophytic associations from the Malay Peninsula: ants of the genusCladomyrma (Formicidae, Camponotinae) as partners ofSaraca thaipingensis (Caesalpiniaceae) andCrypteronia griffithii (Crypteroniaceae). 1. Colony foundation and acquisition of trophobionts. Insect Soc.38 (1991) 27–35.Google Scholar
  82. 82.
    Maschwitz, U., Nässig, W. A., Dumpert, K., and Fiedler, K., Larval carnivory and myrmecoxeny, and imaginal myrmecophily in miletine lycaenids (Lepidoptera: Lycaenidae) on the Malay Peninsula. Tyô to Ga39 (1988) 167–181.Google Scholar
  83. 83.
    Maschwitz, U., Schroth, M., Hänel, H., and Tho, Y. P., Aspects of the larval biology of myrmecophilous lycaenids from West Malaysia. Nachr. ent. Ver. Apollo Frankfurt. N. F.6 (1985) 181–200.Google Scholar
  84. 84.
    Maschwitz, U., Wüst, M., and Schurian, K., Bläulingsraupen als Zuckerlieferanten für Ameisen. Oecologia18 (1975) 17–21.Google Scholar
  85. 85.
    Mathews, J. N. A., Aggregation and mutualism in insect herbivores. Dissertation, University of Oxford, 1993.Google Scholar
  86. 86.
    Nash, D. R., Cost-benefit analysis of a mutualism between lycaenid butterflies and ants. Dissertation, University of Oxford, 1989.Google Scholar
  87. 87.
    Peterson, M. A., The nature of ant attendance and the survival of larvalIcaricia acmon (Lycaenidae). J. Lepid. Soc.47 (1993) 8–16.Google Scholar
  88. 88.
    Pierce, N. E., The ecology and evolution of symbioses between lycaenid butterflies and ants. Dissertation. Harvard University, Cambridge/Massachusetts, 1983.Google Scholar
  89. 89.
    Pierce, N. E., Amplified species diversity: a case study of an Australian lycaenid butterfly and its attendant ants, in: The biology of butterflies, pp. 197–200. Eds. R. I. Vane-Wright and P. R. Ackery, Academic Press, London 1984.Google Scholar
  90. 90.
    Pierce, N. E., Lycaenid butterflies and ants: selection for nitrogen-fixing and other protein-rich food plants. Am. Nat.125 (1985) 888–895.Google Scholar
  91. 91.
    Pierce, N. E., The evolution and biogeography of associations between lycaenid butterflies and ants. Oxford Surv. Evol. Biol.4 (1987) 89–116.Google Scholar
  92. 92.
    Pierce, N. E., Butterfly-ant mutualisms, in: Towards a more exact ecology, pp. 299–324. Eds. P. J. Grubb and J. Whittaker. Blackwell Science Publishers, Oxford 1989.Google Scholar
  93. 93.
    Pierce, N. E., and Easteal, S., The selective advantage of attendant ants for the larvae of a lycaenid butterfly,Glaucopsyche lygdamus. J. Anim. Ecol.55 (1986) 451–462.Google Scholar
  94. 94.
    Pierce, N. E., and Elgar, M. A., The influence of ants on host plant selection byJalmenus evagoras, a myrmecophilous lycaenid butterfly. Behav. Ecol. Sociobiol.16 (1985) 209–222.Google Scholar
  95. 95.
    Pierce, N. E., and Mead, P. S., Parasitoids as selective agents in the symbiosis between lycaenid butterfly larvae and ants. Science112 (1981) 1185–1187.Google Scholar
  96. 96.
    Pierce, N. E., and Young, W. R., Lycaenid butterflies and ants: two-species stable equilibria in mutualistic, commensal, and parasitic interactions. Am. Nat.128 (1986) 216–227.Google Scholar
  97. 97.
    Pierce, N. E., Kitching, R. L., Buckley, R. C., Taylor, M. F. J., and Benbow, K. F., The costs and benefits of cooperation between the Australian lycaenid butterfly,Jalmenus evagoras, and its attendant ants. Behav. Ecol. Sociobiol.21 (1987) 237–248.Google Scholar
  98. 98.
    Pierce, N. E., Nash, D. R., Baylis, M., and Carper, E. R. Variation in the attractiveness of lycaenid butterfly larvae to ants, in: Ant-plant interactions, pp. 131–142. Eds. C. R. Huxley and D. F. Cutler. Oxford University Press, Oxford 1991.Google Scholar
  99. 99.
    Pollard, E., and Yates, T. J., Monitoring butterflies for ecology and conservation. Chapman and Hall, London 1993.Google Scholar
  100. 100.
    Quinet, Y., and Pasteels, J. M., Trail following and stowaway behaviour of the myrmecophilous staphylinid beetle,Homoeusa acuminata, during foraging trips of its hostLasius fuliginosus (Hymenoptera: Formicidae). Insect Soc.42 (1995) 31–44.Google Scholar
  101. 101.
    Risch, S. J., and Carroll, C. R., Effect of a keystone predaceous ant,Solenopsis geminata, on arthropods in a tropical agroecosystem. Ecology63 (1982) 1979–1983.Google Scholar
  102. 102.
    Rojo de la Paz, A., Two new cases of myrmecophily in the Lycaenidae (Lepidoptera): biology ofCigaritis zohra (Donzel, 1847) andCigaritis allardi (Oberthür, 1909) in Morocco. Nota lepid, Suppl.4 (1992) 14–17.Google Scholar
  103. 103.
    Samson, P. R., and O'Brien, C. F., Predation onOgyris genoveva (Lepidoptera: Lycaenidae) by meat ants. Aust. ent. Mag.8 (1981) 21.Google Scholar
  104. 104.
    Sanders, C. J., and Pang, A., Carpenter ants as predators of spruce budworm in the boreal forest of northwestern Ontario. Can. Ent.124 (1992) 1093–1100.Google Scholar
  105. 105.
    Scheper, M., van der Made, J., and Wynhoff, I.,Maculinea alcon: interactions between a myrmecophilous butterfly, its larval foodplant and its host ants. Proc. expl appl. Ent.5 (1995) in press.Google Scholar
  106. 106.
    Schroth, M., and Maschwitz, U., Zur Larvalbiologie und Wirtsfundung vonMaculinea teleius (Lepidoptera: Lycaenidae), einem Parasiten vonMyrmica laevinodis (Hymenoptera: Formicidae). Ent. Gener.9 (1984) 225–230.Google Scholar
  107. 107.
    Schurian, K. G., Fiedler, K., and Maschwitz, U., Parasitoids exploit secretions of myrmecophilous lycaenid butterfly caterphillars (Lycaenidae). J. Lepid. Soc.47 (1993) 150–154.Google Scholar
  108. 108.
    Seufert, P., and Fiedler, K.,Drupadia ravindra andD. theda (Lepidoptera: Lycaenidae): contrasting systems of myrmecophily among two closely related butterfly species, in: Les insectes sociaux, p. 275. Eds. A. Lenoir, G. Arnold and M. Lepage, Université Paris Nord, Paris 1994.Google Scholar
  109. 109.
    Shields, O., World numbers of butterflies. J. Lepid. Soc.43 (1989) 178–183.Google Scholar
  110. 110.
    Smiley, J. T., Atsatt, P. R., and Pierce, N. E., Local distribution of the lycaenid butterfly,Jalmenus evagoras, in response to host ants and plants. Oecologia76 (1988) 416–422.Google Scholar
  111. 111.
    Tautz, J., and Fiedler, K., Mechanoreceptive properties of caterpillar hairs involved in mediation of butterfly-ant symbioses. Naturwissenschaften79 (1992) 561–563.Google Scholar
  112. 112.
    Thomas, J. A., The behaviour and habitat requirements ofMaculinea nausithous (the Dusky Large Blue Butterfly) andM. teleius (the Scarce Large Blue) in France. Biol. Conserv.28 (1984) 325–347.Google Scholar
  113. 113.
    Thomas, J. A., Elmes, G. W., and Wardlaw, J. C., Contest competition amongMaculinea rebeli butterfly larvae in ant nests. Ecol. Ent.18 (1993) 73–76.Google Scholar
  114. 114.
    Thomas, J. A., Elmes, G. W., Wardlaw, J. C., and Woyciechowski, M., Host specificity amongMaculinea butterflies inMyrmica ant nests. Oecologia79 (1989) 452–457.Google Scholar
  115. 115.
    Thomas, J. A., and Wardlaw, J. C., The effect of queen ants on the survival ofMaculinea arion larvae inMyrmica ant nests. Oecologia85 (1990) 87–91.Google Scholar
  116. 116.
    Thomas, J. A., and Wardlaw, J. C., The capacity of aMyrmica ant nest to support a predacious species ofMaculinea butterfly. Oecologia91 (1992) 101–109.Google Scholar
  117. 117.
    Vander Meer, R. K., and Wojcik, D. P., Chemical mimicry in the myrmecophilous beetleMyrmecaphodius excavaticollis. Science218 (1982) 806–808.Google Scholar
  118. 118.
    Vane-Wright, R. I., Ecological and behavioural orgins of diversity in butterflies, in: The diversity of insect faunas: pp. 56–70. Eds. L. A. Mound and N. Waloff. Academic Press. London 1978.Google Scholar
  119. 119.
    Viehmeyer, H., A myrmecophilous lycaenid chrysalis from the Philippines. Phillipp. J. Sci. D5 (1910) 73–77.Google Scholar
  120. 120.
    Wagner, D., Species-specific effects of tending ants on the development of lycaenid butterfly larvae. Oecologia96 (1993) 276–281.Google Scholar
  121. 121.
    Wagner, D., Species-sepcific effects of tending ants on the life history ofHemiargus isola, a North American lycaenid butterfly. Dissertation, Princeton University, 1994.Google Scholar
  122. 122.
    Warnecke, G., Übersicht über die bisher als myrmekophil bekannt gewordenen paläarktischen Schmetterlingsraupen der Familie Lycaenidae. Int. ent. Z. Guben26 (1932) 165–171, 215–219, 238–242, 285–291, 375–378, 431–433, 460–462, 479–480, 514–516;27 (1933) 44–46, 121–127, 178–180, 305–309.Google Scholar
  123. 123.
    Warrington, S., and Whittaker, J. B., An experimental field study of different levels of insect herbivory induced byFormica rufa predation on sycamore (Acer pseudoplatanus) I. Lepidoptera larvae. J. Anim. Ecol.22 (1985) 775–785.Google Scholar
  124. 124.
    Watkins, J. F., Gehlbach, F. R., and Baldridge, R. S., Ability of the blind snake,Leptotyphlops dulcis, to follow pheromone trails of army ants,Neivamyrmex nigrescens andN. opacithorax. Sthwest. Nat.12 (1967) 455–462.Google Scholar
  125. 125.
    Wilson, E. O., The insect societies. Harvard University Press, Cambridge/ Massachusetts 1971.Google Scholar
  126. 126.
    Woodman, R. L., and Price, P. W., Differential larval predation by ants can influence willow sawfly community structure. Ecology73 (1992) 1028–1037.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1996

Authors and Affiliations

  • K. Fiedler
    • 1
  • B. Hölldobler
    • 1
  • P. Seufert
    • 1
  1. 1.Lehrstuhl für Verhaltensphysiologie und SoziobiologieTheodor-Boveri-Institut am Biozentrum der UniversitätWürzburg(Germany)

Personalised recommendations