Advertisement

Experientia

, Volume 51, Issue 9–10, pp 914–926 | Cite as

The extracellular matrix of the hematopoietic microenvironment

  • G. Klein
Multi-author Reviews Extracellular Matrix in Animal Development

Abstract

The bone marrow microenvironment plays an important role in promoting hematopoietic progenitor cell proliferation and differentiation and the controlled egress of these developing hematopoietic cells. The establishment of long-term bone marrow cultures, which are thought to mimic hematopoiesis in vitro, and various stromal cell lines has greatly facilitated the analysis of the functions of this microenvironment. Extracellular matrix (ECM) molecules of all three categories (collagens, proteoglycans and glycoproteins) have been identified as part of this microenvironment and have been shown to be involved in, different biological functions such as cell adhesion and anti-adhesion, binding and presentation of various cytokines and regulation of cell growth. It is suggested that these matrix molecules in combination with cytokines are crucial for compartmentalization of the bone marrow. Although many cell adhesion molecules have been characterized on the surface of hematopoietic progenitor cells, the nature of cellular receptors for the ECM components is less well defined. During leukemia, many immature blood cells are released from bone marrow, but it is not yet known whether these abnormalities in hematopoiesis are also caused by an altered microenvironment or altered composition of its extracellular matrix. The elucidation of the involvement of specific ECM-isoforms and as yet not characterized ECM components and their receptors in the bone marrow will certainly help towards a better understanding of these phenomena.

Key words

Cell-matrix interactions adhesion cytokines collagens proteoglycans tenascin laminin fibronectin cellular receptors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anklesaria, P., Greenberger, J. S., Fitzgerald T. J., Sullenberger, B., Wicha, M., and Campbell, A., Hemonectin mediates adhesion of engrafted murine progenitors to a clonal bone marrow stromal cell line from Sl/Sld mice. Blood77 (1991) 1691–1698.PubMedGoogle Scholar
  2. 2.
    Asch, A. S., Tepler, J., Silbiger, S., and Nachman, R. L., Cellular attachment to thrombospondin molecule: cooperative interactions between receptor systems. J. biol. Chem.266 (1990) 1740–1745.Google Scholar
  3. 3.
    Aukhil, I., Joshi, P., Yan, Y., and Erickson, H. P., Cell- and heparin-binding domains of the hexabrachion arm identified by tenascin expression proteins. J. biol. Chem.268 (1993) 2542–2553.PubMedGoogle Scholar
  4. 4.
    Battaglia, C., Aumailley, M., Mann, K., Mayer, U., and Timpl, R., Structural basis of β1 integrin-mediated cell adhesion to a large heparan sulfate proteoglycan from basement membranes. Eur. J. Cell Biol.61 (1993) 92–99.PubMedGoogle Scholar
  5. 5.
    Bentley, S. A., Collagen synthesis by bone marrow stromal cells: a quantitative study. Br. J. Haemat.50 (1982) 491–497.Google Scholar
  6. 6.
    Bentley, S. A., Kirby, S. L., Anklesaria, P., and Greenberger, J. S., Biochemical and functional characterization of proteoglycans produced by Sl/Sld murine bone marrow stromal cell lines. J. cell. Physiol.145 (1990) 53–59.CrossRefPubMedGoogle Scholar
  7. 7.
    Bentley, S. A., and Tralka, T. S., Fibronectin-mediated attachment of hematopoietic cells to stromal elements in continuous bone marrow cultures. Expl Hemat.11 (1983) 129–138.Google Scholar
  8. 8.
    Bernardi, P., Patel, V. P., and Lodish, H. F., Lymphoid precursor cells adhere to two different sites on fibronectin. J. Cell Biol.105 (1987) 489–498.CrossRefPubMedGoogle Scholar
  9. 9.
    Bernfield, M., Kokenyesi, R., Kato, M., Hinkes, M. T., Spring, J., Gallo, R. L., and Lose, E. J., Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. A. Rev. Cell Biol.8 (1992) 365–393.Google Scholar
  10. 10.
    Bhatia, R., Wayner, E. A., McGlave, P. B., and Verfaillie, C. M., Interferon-α restores normal adhesion of chronic myelogenous leukemia hematopoietic progenitors to bone marrow stroma by correcting impaired β1 integrin receptor function. J. clin. Invest.94 (1994) 384–391.PubMedGoogle Scholar
  11. 11.
    Bornstein, P., Thrombospondins: structure and regulation of expression. FASEB J.6 (1992) 3290–3299.PubMedGoogle Scholar
  12. 12.
    Burgeson, R. E., Chiquet, M., Deutzmann, R., Ekblom, P., Engel, J., Kleinmann, H., Martin, G. R., Meneguzzi, G., Paulsson, M., Sanes, J., Timpl, R., Tryggvason, K., and Yurchenco, P. D., A new nomenclature for laminins. Matrix Biol.5 (1994) 209–212.CrossRefGoogle Scholar
  13. 13.
    Burthem, J., and Cawley, J. C., The bone marrow fibrosis of hairy-cell leukemia is caused by the synthesis and assembly of a fibronectin matrix by the hairy cells. Blood83 (1994) 497–504.PubMedGoogle Scholar
  14. 14.
    Campbell, A. D., The role of hemonectin in the cell adhesion mechanisms of bone marrow. Hemat. Path.6 (1992) 51–60.Google Scholar
  15. 15.
    Campbell, A. D. and Wicha M. S., Extracellular matrix and the hematopoietic microenvironment. J. Lab. clin. Med.112 (1988) 140–146.PubMedGoogle Scholar
  16. 16.
    Campbell, A. D., Long, M. W., and Wicha, M. S., Haemonectin, a bone marrow adhesion protein specific for cells of the granulocytic lineage Nature329 (1987) 744–746.CrossRefPubMedGoogle Scholar
  17. 17.
    Campbell, A. D., Long, M. W., and Wicha, M. S., Developmental regulation of granulocytic cell binding to hemonectin. Blood76 (1990) 1758–1764.PubMedGoogle Scholar
  18. 18.
    Chabannon, C., and Torok-Storb, B. Stem cell-stromal cell interactions. Curr. Topics Microbiol. Immunol.177 (1992) 123–136.Google Scholar
  19. 19.
    Chichester, C. O., Fernandez, M., and Minguell, J. J., Extracellular matrix gene expression by human bone marrow stroma and by marrow fibroblasts. Cell Adhes. Commun.1 (1993) 93–99.PubMedGoogle Scholar
  20. 20.
    Chiquet, M., Vrucinic-Filipi, N., Schenk, S., Beck, K., and Chiquet-Ehrismann, R., Isolation of chick tenascin variants and fragments. Eur. J. Biochem.199 (1991) 379–388.CrossRefPubMedGoogle Scholar
  21. 21.
    Chiquet-Ehrismann, R., Anti-adhesive molecules of the extracellular matrix. Curr. Opin. Cell Biol.3 (1991) 800–804.CrossRefPubMedGoogle Scholar
  22. 22.
    Chiquet-Ehrismann R., Tenascin and other adhesion-modulating proteins in cancer. Cancer Biol.4 (1993) 301–310.PubMedGoogle Scholar
  23. 23.
    Chiquet-Ehrismann, R., Hagios, C., and Matsumoto, K., The tenascin gene family. Perspect. Dev. Neurobiol.2 (1994) 3–7.PubMedGoogle Scholar
  24. 24.
    Chung, C. Y., and Erickson, H. P., Cell surface annexin II is a high affinity receptor for the alternatively spliced segment of tenascin-C. J. Cell Biol.126 (1994) 539–548.CrossRefPubMedGoogle Scholar
  25. 25.
    Clark, B. R., Gallagher, J. T., and Dexter T. M., Cell adhesion in the stromal regulation of haemopoiesis. Baillieres clin. Haemat.5 (1992) 619–652.Google Scholar
  26. 26.
    Coulombel, L., Rosemblatt, M., Gaugler M. H., Leroy, C., and Vainchenker, W. Cell-cell matrix and cell-cell interactions during hematopoietic differentiation. Bone Marrow Transplant.9 Suppl. 1 (1992) 19–22.Google Scholar
  27. 27.
    Deryugina, E. J., and Müller-Sieburg C. E., Stromal cells in long-term cultures: keys to the elucidation of hematopoietic development? Crit. Rev. Immun.13 (1993) 115–150.Google Scholar
  28. 28.
    Dexter T. M., Allen, T. D., and Lajtha L. G., Conditions controlling the proliferation of haematopoietic stem cells in vitro. J. cell. Physiol.91 (1977) 335–344.CrossRefPubMedGoogle Scholar
  29. 29.
    Dexter, T. M., Spooncer, E., Simmons, P., and Allen, T. D., Long-term marrow culture: an overview of techniques and experience, in: Long-term Bone Marrow Culture, pp. 57–96. Eds D. C. Wright and J. S. Greenberger Alan R. Liss, Inc., New York 1984.Google Scholar
  30. 30.
    Dexter, T. M., Coutinho, L. H., Spooncer, E., Heyworth, C. M., Daniel, C. P., Schiro, R., Chang, J., and Allen, T. D., Stromal cells in haemopoiesis in: Molecular Control of Haemopoiesis, Ciba Found. Symp., vol. 148, pp. 76–95, Wiley, Chichester 1990.Google Scholar
  31. 31.
    Diamond, M. S., and Springer, T. A., The dynamic regulation of integrin adhesiveness. Curr. Biol.4 (1994) 506–517.CrossRefPubMedGoogle Scholar
  32. 32.
    Dorshkind, K., Regulation of hemopoiesis by bone marrow stromal cells and their products. A. Rev. Immun.8 (1990) 111–137.Google Scholar
  33. 33.
    Ekblom, M., Fässler R., Tomasini-Johansson, B., Nilsson, K., and Ekblom, P. Downregulation of tenascin expression by glucocorticoids in bone marrow stromal cells and in fibroblasts. J. Cell Biol.123 (1993) 1037–1045.CrossRefPubMedGoogle Scholar
  34. 34.
    Elices, M. J., Osborn, L., Takada, Y., Crouse, C., Luhowskyj, S., Hemler, M. E., and Lobb, R. R., VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct form the VLA-4/fibronectin binding site Cell60 (1990) 577–584.PubMedGoogle Scholar
  35. 35.
    End, P., Panayotou, G., Entwistle, A., Waterfield, M. D. and Chiquet, M., Tenascin: a modulator of cell growth. Eur. J. Biochem.209 (1992) 1041–1051.PubMedGoogle Scholar
  36. 36.
    Erickson, H. P., Tenascin-C, tenascin-R, and tenascin-X — a family of talented proteins in search of functions. Curr. Opin. Cell Biol.5 (1993) 869–876.CrossRefPubMedGoogle Scholar
  37. 37.
    Erickson, H. P., and Bourdon, M. A., Tenascin: an extracellular matrix protein prominent in specialized embryonic tissues and tumors. A. Rev. Cell Biol.5 (1989) 71–92.Google Scholar
  38. 38.
    Frazier, W. A., Thrombospondin: a modular adhesive glycoprotein of platelets and nucleated cells. J. Cell Biol.105 (1987) 625–632.PubMedGoogle Scholar
  39. 39.
    Gallagher, J. T., Spooncer, E., and Dexter, T. M., Role of the cellular matrix in haematopoiesis. I. Synthesis of glycosaminoglycans by mouse bone marrow cell cultures. J. Cell Sci.63 (1983) 155–171.PubMedGoogle Scholar
  40. 40.
    Gartner, S., and Kaplan, H. S., Long-term culture of human bone marrow cells. Proc. natl Acad. Sci. USA77 1980 4756–4759.PubMedGoogle Scholar
  41. 41.
    Geiger, B., and Ayalon, O., Cadherins. A. Rev. Cell Biol.8 (1992) 307–332.Google Scholar
  42. 42.
    Giancotti, F. G., Comoglio, P. M., and Tarone, G., Fibronectin-plasma membrane interaction in the adhesion of hemopoietic cells. J. Cell Biol.103 (1986) 429–437.PubMedGoogle Scholar
  43. 43.
    Gordon, M. Y., Extracellular matrix of the marrow micorenvironment. Br. J. Haemat.70 (1988) 1–4.Google Scholar
  44. 44.
    Gordon, M. Y., Adhesive properties of haematopoiestic stem cells. Br. J. Haemat.68 (1988) 149–151.Google Scholar
  45. 45.
    Gordon, M. Y., Riley, G. P., Watt, S. M., and Greaves, M. F., Compartmentalization of a haematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment. Nature326 (1987) 403–405.CrossRefPubMedGoogle Scholar
  46. 46.
    Gordon, M. Y., Dowding, C. R., Riley, G. P., Goldman, J. M., and Greaves, M. F., Altered adhesive interactions with marrow stoma of hematopoietic progenitor cells in chronic myelogenous leukemia. Nature328 (1987) 342–344.PubMedGoogle Scholar
  47. 47.
    Gordon, M. Y., Riley, G. P., and Clarke, D., Heparan sulfate is necessary for adhesive interactions between human early hemopoietic progenitor cells and the extracellular matrix of the marrow microenvironment. Leukemia2 (1988) 804–809.PubMedGoogle Scholar
  48. 48.
    Greenberger J. S., Is the marrow stroma of AML patients a “leukemic” stroma? Expl Hemat.20 (1992) 1041–1042.Google Scholar
  49. 49.
    Greenberger, J. S., The hematopoietic microenvironment. Crit. Rev. Oncol. Hemat.11 (1991) 65–84.Google Scholar
  50. 50.
    Guan, J. L., and Hynes, R. O., Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor α4β1. Cell60 (1990) 53–61.PubMedGoogle Scholar
  51. 51.
    Haugen, P. K., McCarthy, J. B., Skubitz, A. P. N., Furcht, L. T., and Letourneau, P. C., Recognition of the A-chain carboxy-terminal heparin binding region of fibronectin involves multiple sites: two recognition sequences act independently to promote neural cell adhesion. J. Cell Biol.111 (1990) 2733–2742.PubMedGoogle Scholar
  52. 52.
    Hayashi, K., Madri, J. A., and Yurchenco P. D., Endothelial cells interact with the core protein of basement membrane perlecan through β1 and β integrins: an adhesion modulated by glycosaminoglycan. J. Cell Biol.119 (1992) 945–959.CrossRefPubMedGoogle Scholar
  53. 53.
    Huang, S., and Terstappen, L. W. M. M., Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells. Nature360 (1992) 745–749.PubMedGoogle Scholar
  54. 54.
    Huang, S., and Terstappen, L. W. M. M., Formation of haematopoietic micorenvironment and haematopoietic stem cells from single human bone marrow stem cells. Correction Nature,368 (1994) 664.Google Scholar
  55. 55.
    Hynes R. O., Fibronectins. Springer Verlag Inc., New York 1990.Google Scholar
  56. 56.
    Iozzo, R. V., Perlecan: a gem of a proteoglycan. Matrix Biol.14 (1994) 203–208.PubMedGoogle Scholar
  57. 57.
    Joshi, P., Chung, C. Y., Aukhil, I. and Erickson, H. P., Endothelial cells adhere to the RGD domain and the fibrinogen-like terminal knob of tenascin. J. Cell Sci.106 (1993) 389–400.PubMedGoogle Scholar
  58. 58.
    Kerst, J. M., Sanders, J. B., Slaper-Cortenbach, I. C., Doorakkers, M. C., Hooibrink, B., van Oers R. H., von dem Borne, A. E., and van der Schoot, C. E., Alpha 4 beta 1 and alpha 5 beta 1 are differentially expressed during myelopoiesis and mediate the adherence of human CD34+ cells to fibronectin in an activation-dependent way. Blood81 (1993) 344–351.PubMedGoogle Scholar
  59. 59.
    Kirby, S. L., and Bentley, S. A., Proteoglycan synthesis in two murine bone marrow stromal cell lines. Blood70 (1987) 1333–1341.Google Scholar
  60. 60.
    Kjellén, L., and Lindahl, U., Proteoglycans: structures and interactions. A. Rev. Biochem.60 (1991) 443–475.CrossRefGoogle Scholar
  61. 61.
    Klein, G., Beck, S., and Müller, C. A., Tenascin is a cytoadhesive extracellular matrix component of the human hematopoietic microenvironment. J. Cell Biol.123 (1993) 1027–1035.PubMedGoogle Scholar
  62. 62.
    Klein, G., Conzelmann, S., Beck, S., Timpl, R., and Müller, C. A., Perlecan in the human bone marrow: a growth factor presenting, but repelling extracellular matrix component for hematopoietic cells. Matrix Biol.14 (1994) 457–465.Google Scholar
  63. 63.
    Klein, G., Müller, C. A. Tillet, E., Chu, M.-L., and Timpl, R., Collagen type VI in the human bone marrow microenvironment: a strong cytoadhesive component. Blood (1995) in press.Google Scholar
  64. 64.
    Koenigsmann, M., Griffin, J. D., DiCarlo, J. and Cannistra, S. A., Myeloid and erythroid progenitor cells from normal bone marrow adhere to collagen type I. Blood79 (1992) 657–665.PubMedGoogle Scholar
  65. 65.
    Kolset, S. O., and Gallagher, J. T.. Proteoglycans in haemopoietic cells. Biochim. biophys. Acta1032 (1990) 191–211.PubMedGoogle Scholar
  66. 66.
    Lawler, J., and Hynes, R. O., Structural organization of the thrombospondin molecule. Semin. Thromb. Hemost.13 (1987) 245–254.Google Scholar
  67. 67.
    Lichtman, M. D., The relationship of stromal cells to hematopoietic cells in marrow, in: Long-term Bone Marrow Culture, pp. 57–96, Eds. D. C. Wright and J. S. Greenberger. Alan R. Liss, Inc., New York 1984.Google Scholar
  68. 68.
    Liesveld, J. L. Winslow, J. M., Kempski, M. C., Ryan, D. H., Brennan, J. K., and Abboud, C. N., Adhesive interactions of normal and leukemic human CD34+myeloid progenitors: role of marrow stromal, fibroblast, and cytomatrix components. Expl Hemat.19 (1991) 63–70.Google Scholar
  69. 69.
    Liesveld, J. L., Winslow, J. M., Frediani, K. E., Ryan, D. H., and Abboud, C.N., Expression of integrins and examination of their adhesive function in normal and leukemic hematopoietic cells. Blood81 (1993) 112–121.PubMedGoogle Scholar
  70. 70.
    Liesveld, J.L., Dispersio, J.F., and Abboud, C. N., Integrins and adhesive receptors in normal and leukemic CD34+progenitor cells: potential regulatory checkpoints for cellular traffic. Leuk. Lymph.14 (1994) 19–28.Google Scholar
  71. 71.
    Long, M.W., Blood cell adhesion molecules. Expl Hemat.20 (1992) 288–301.Google Scholar
  72. 72.
    Long, M.W., and Dixit, V.M., Thrombospondin functions as a cytoadhesion molecule for human hematopoietic progenitor cells. Blood75 (1990) 2311–2318.PubMedGoogle Scholar
  73. 73.
    Long, M.W., Briddell, R., Walter, A.W., Bruno, E., and Hoffman, R., Human hematopoietic stem cell adherence to cytokines and matrix molecules. J. clin. Invest.90 (1992) 251–255.PubMedGoogle Scholar
  74. 74.
    Luikart, S.D., Sackrison, J.L., and Maninglia, C.A., Bone marrow modulation of HL60 phenotype. Blood70 (1988) 1119–1123.Google Scholar
  75. 75.
    Luikart, S.D., Maninglia, C.A., Furcht, L.T. McCarthy, J.B., and Oegema, T.R. Jr., A heparan sulfate-containing fraction of bone marrow stroma induces maturation of HL-60 cells in vitro. Cancer Res.50 (1990) 3781–3785.PubMedGoogle Scholar
  76. 76.
    Mayne, R., and Brewton, R.G., New members of the collagen superfamily. Curr. Opin. Cell Biol.5 (1993) 883–890.PubMedGoogle Scholar
  77. 77.
    Minguell, J.J., and Tavassoli, M., Proteoglycan synthesis by hemopoietic progenitor cells. Blood73 (1989) 1821–1827.PubMedGoogle Scholar
  78. 78.
    Moritz, T., Patel, V.P., and Williams, D.A., Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral viruses. J. clin. Invest.93 (1994) 1451–1457.PubMedGoogle Scholar
  79. 79.
    Oguri, K., Okayama, E., Caterson, B., and Okayama, M., Isolation, characterization and localization of glycosaminoglycans in rabbit bone marrow. Blood70 (1987) 501–510.PubMedGoogle Scholar
  80. 80.
    Osborn, L., Hession, C., Tizard, R., Vassallo, C., Luhowskyj S., Chi-Rosso, G., and Lobb, R., Direct cloning of vascular cell adhesion molecule-1 (VCAM1), a cytokine-induced endothelial protein that binds to lymphocytes. Cell59 (1989) 1203–1211.PubMedGoogle Scholar
  81. 81.
    Patel, V.P., and Lodish, H.F., Loss of adhesion of murine erythroleukemic cells to fibronectin during erythroid differentiation. Science224 (1984) 996–998.PubMedGoogle Scholar
  82. 82.
    Patel, V.P., and Lodish, H.F., The fibronectin receptor on mammalian erythroid cells: characterization and developmental regulation. J. Cell Biol.102 (1986) 449–456.PubMedGoogle Scholar
  83. 83.
    Patel, V.P., and Lodish, H.F., Fibronectin matrix is required for differentiation of murine erythroleukemia cells into reticulocytes. J. Cell Biol.105 (1987) 3105–3118.PubMedGoogle Scholar
  84. 84.
    Patel, V.P., Ciechanover, A., Platt, O., and Lodish, H.F., Mammalian, reticulocytes lose adhesion to fibronectin during maturation to erythrocytes. Proc. natl Acad. Sci. USA82 (1985) 440–444.PubMedGoogle Scholar
  85. 85.
    Peters, C., O'Shea, K.S., Campbell, A.D., Wicha, M.S., and Long, M.W., Fetal expression of hemonectin: an extracellular matrix hematopoietic cytoadhesion molecule. Blood75 (1990) 357–364.PubMedGoogle Scholar
  86. 86.
    Petrides, P.E., and Dittmann, K.H., How do normal and leukemic white blood cells egress from the bone marrow? Blut61 (1990) 3–13.PubMedGoogle Scholar
  87. 87.
    Prieto, A.L., Andersson-Fisone, C., and Crossin, K.L., Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin. J. Cell Biol.119 (1992) 663–678.PubMedGoogle Scholar
  88. 88.
    Reuss-Borst, M.A., Klein, G., Waller, H.D., and Müller, C.A., Differential expression of adhesion molecules in acute leukemia. Leukemia9 (1995) 869–874.PubMedGoogle Scholar
  89. 89.
    Reuss-Borst, M.A., Bühring, H.J., Klein, G., and Müller, C.A., Adhesion molecules on CD34+hematopoietic cells in normal human bone marrow and leukemia. Ann. Hemat.65 (1992) 169–174.Google Scholar
  90. 90.
    Ridley, R.C., Xiao, H., Hata, H., Woodliff, J., Epstein, J., and Sanderson, R.D., Expression of syndecan regulates human myeloma plasma cell adhesion to collagen type I. Blood81 (1993) 767–774.PubMedGoogle Scholar
  91. 91.
    Roberts, R., Gallagher, J., Spooncer, E., Allen, T.D., Bloomfield, F., and Dexter, T.M., Heparan sulfate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature332 (1988) 376–378.CrossRefPubMedGoogle Scholar
  92. 92.
    Rüegg, C.R., Chiquet-Ehrismann, R., and Alkan, S.S., Tenascin, an extracellular matrix protein, exerts immunomodulatory activities. Proc. natl Acad. Sci. USA86 (1989) 7437–7441.PubMedGoogle Scholar
  93. 93.
    Ruoslahti, E., Noble, N.A., Kagami, S., and Border, W.A., Integrins. Kidney Int.45 Suppl. 44 (1994) S-17–S-22.Google Scholar
  94. 94.
    Ryan, D.H., Nuccie, B.L., Abboud, C.N., and Winslow, J.M., Vascular cell adhesion molecule-1 and integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells. J. clin. Invest.88 (1991) 995–1004.PubMedGoogle Scholar
  95. 94a.
    Saeland, S., Duvert, V., Caux, C., Pandrau, D., Favre, C., Vallé, A., Durand, J., Charbord, P., de Vries, J., and Banchereau, J., Distribution of surface-membrane molecules on bone marrow and cord blood CD34+ hematopoietic cells. Expl. Hemat.20 (1992) 24–33.Google Scholar
  96. 95.
    Sage, H., and Bornstein, P., Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin, and thrombospondin. J. biol. Chem.266 (1991) 14831–14834.PubMedGoogle Scholar
  97. 96.
    Sanderson, R.D., Lalor, P., and Bernfield, M., B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Reg.1 (1989) 27–35.Google Scholar
  98. 97.
    Sanderson, R.D., Sneed, T.B., Young, L.A., Sullivan, G.L., and Lander, A.D., Adhesion of B-lymphoid (MPC-11) cells to type I collagen is mediated by the integral membrane proteoglycan, syndecan. J. Immun.148 (1992) 3902–3911.PubMedGoogle Scholar
  99. 98.
    Shaw, L.M., and Olson, B.R., FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem. Sci.16 (1991) 191–194.PubMedGoogle Scholar
  100. 99.
    Siczkowski, M., Clarke, D., and Gordon, M.Y., Binding of primitive hematopoietic progenitor cells to marrow stromal cells involves heparan sulfate. Blood80 (1992) 912–919.PubMedGoogle Scholar
  101. 100.
    Siczkowski, M., Robertson, D., and Gordon, M.Y., Synthesis and deposition of glycosaminoglycans in the murine hemopoietic stromal line S17: modulators of the hemopoietic microenvironment. Expl Hemat.20 (1992) 1285–1290.Google Scholar
  102. 101.
    Singer, J.W., Keating, A., and Wight, T.N., The human hematopoietic microenvironment, in: Recent Advances in Haematology, pp. 1–24. Ed. A.V. Hofmann. Churchill-Livingstone, Inc., New York 1985.Google Scholar
  103. 102.
    Soini, Y., Kamel, D., Apaja-Sarkkinen, M., Virtanen, I., and Lehto, V.-P., Tenascin immunoreactivity in normal and pathological bone marrow. J. clin. Path.46 (1993) 218–221.PubMedGoogle Scholar
  104. 103.
    Soligo, D., Schiro, R., Luksch, R., Manara, G., Quirici, N., Parravicini, C., and Lambertenghi-Deliliers, G., Expression of integrins in human bone marrow. Br. J. Haemat.76 (1990) 323–332.Google Scholar
  105. 104.
    Spring, J., Beck, K., and Chiquet-Ehrismann, R., Two contrary functions of tenascin: dissection of the active sites by recombinant tenascin fragment. Cell59 (1989) 325–334.PubMedGoogle Scholar
  106. 105.
    Springer, T.A., Adhesion receptors of the immune system. Nature346 (1990) 425–434.PubMedGoogle Scholar
  107. 106.
    Spooncer, E., Gallagher, J.T., Krizsa, F., and Dexter, T.M., Regulation of haemopoiesis in long-term bone marrow cultures. IV. Glycosaminoglycan synthesis and the stimulation of haemopoiesis by beta-D-xylosides. J. Cell Biol.96 (1983) 510–514.PubMedGoogle Scholar
  108. 107.
    Sriramarao, P., Mendler, M., and Bourdon, M.A., Endothelial cell attachment and spreading on human tenascin is mediated by α2β1 and αvβ3 integrins. J. Cell Sci.105 (1993) 1001–1012.PubMedGoogle Scholar
  109. 108.
    Suchard, S.J., Mansfield, P.J., and Dixit, V.M., Modulation of thrombospondin receptor expression during HL60 cell differentiation. J. Immun.152 (1994) 877–888.PubMedGoogle Scholar
  110. 109.
    Sugahara, H., Kanakura, Y., Furitsu, T., Ishihara, K., Oritani, K., ikeda, H., Kitayama, H. Ishikawa, J., Hashimoto K., Kanayama, Y., and Matsuzawa, Y., Induction of programmed cell death in human hematopoietic cell lines by fibronectin via its interaction with very late antigen 5. J. expl Med.179 (1994) 1757–1766.Google Scholar
  111. 110.
    Takahashi, G.W., Moran, D., Andrews, D.F. III, and Singer, J.W., Differential expression of collagenase by human fibroblasts and bone marrow stromal cells. Leukemia8 (1994) 305–308.PubMedGoogle Scholar
  112. 111.
    Takeichi, M., Cadherin cell adhesion receptors as a morphogenetic regulator. Science251 (1991) 1451–1455.PubMedGoogle Scholar
  113. 112.
    Teixidó, J., Hemler, M.E., Greenberger, J.S., and Anklesaria, P., Role of beta 1 and beta 2 integrins in the adhesion of human CD34hi stem cells to the bone marrow. J. clin. Invest.90 (1992) 358–367.PubMedGoogle Scholar
  114. 113.
    Timpl, R., Proteoglycans of basement membranes. Experientia49 (1993) 417–428.PubMedGoogle Scholar
  115. 114.
    Timpl, R., and Brown, J.C., The laminins. Matrix Biol.14 (1994) 275–281.PubMedGoogle Scholar
  116. 115.
    van der Rest, M., and Garrone, R., Collagen family of proteins. FASEB J.5 (1991) 2814–2823.PubMedGoogle Scholar
  117. 116.
    Verfaillie, C.M., McCarthy, J.B., and McGlave, P.B., Differentiation of primitive human multipotent hematopoietic progenitors into single lineage clonogenic progenitors is accompanied by alterations in their interaction with fibronectin. J. expl Med.174 (1991) 693–703.Google Scholar
  118. 117.
    Verfaillie, C.M., McCarthy, J.B., and McGlave, P.B., Mechanisms underlying abnormal trafficking of malignant progenitors in chronic myelogeneous leukemia. Decreased adhesion to stroma and fibronectin but increased adhesion to the basement membrane components laminin and type IV collagen. J. clin. Invest.90 (1992) 1232–1241.PubMedGoogle Scholar
  119. 118.
    Vestweber, D., Selectins: cell surface lectins which mediate the binding of leukocytes to endothelial cells. Semin. Cell Biol.3 (1992) 211–220.PubMedGoogle Scholar
  120. 119.
    White, H., Totty, N., and Panayotou, G., Haemonectin, a granulocytic-cell-binding protein, is related to the plasma glycoprotein fetuin. Eur. J. Biochem.213 (1993) 523–528.PubMedGoogle Scholar
  121. 120.
    Whitlock, C.A., and Witte, O.N., Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc. natl Acad. Sci. USA79 (1982) 3608–3612.PubMedGoogle Scholar
  122. 121.
    Wight, T.N., Kinsella, M.G., Keafing, A., and Singer, J.V., Proteoglycans in human long-term bone marrow cultures: biochemical and ultrastructural analyses. Blood67 (1986) 1333–1343.PubMedGoogle Scholar
  123. 122.
    Williams, D.A., Rios, M., Stephens, C., and Patel, V.P., Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions. Nature352 (1991) 438–441.PubMedGoogle Scholar
  124. 123.
    Yokosaki, Y., Palmer, E.L., Prieto, A.L., Crossin, K.L., Bourdon, M.A., Pytela, R., and Sheppard, D., The integrin α9β1 mediates cell attachment to a non-RGD site in the third fibronectin type III repeat of tenascin. J. biol. Chem.269 (1994) 26691–26696.PubMedGoogle Scholar
  125. 124.
    Zuckerman, K.S., Rhodes, R.K., Goodrum, D.D., Patel, V.R., Sparks, B., Wells, J., Wicha, M.S., and Mayo, L.A., Inhibition of collagen deposition in the extracellular matrix prevents the establishment of a stroma supportive of hematopoiesis in long term murine bone marrow cultures. J. clin. Invest.75 (1985) 970–975.PubMedGoogle Scholar
  126. 125.
    Zuckerman, K.S., and Wicha, M.S., Extracellular matrix production by the adherent cells of long-term murine bone marrow cultures. Blood61 (1983) 540–547.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1995

Authors and Affiliations

  • G. Klein
    • 1
  1. 1.Department of Internal Medicine II, Section, for Transplantation Immunology and ImmunohematologyUniversity Medical ClinicTübingen(Germany)

Personalised recommendations