Experientia

, Volume 51, Issue 9–10, pp 873–882

The extracellular matrix during heart development

  • C. D. Little
  • B. J. Rongish
Multi-author Reviews Extracellular Matrix in Animal Development

Abstract

The embryonic extracellular matrix, which is comprised of glycosaminoglycans, glycoproteins, collagens, and proteoglycans, is believed to play multiple roles during heart morphogenesis. Some of these ECM components appear throughout development, however, certain molecules exhibit an interesting transient spatial and temporal distribution. Due to significant new data that have been gathered predominantly in the past 10 years, a comprehensive review of the literature is needed. The intent of this review is to highlight work that addresses mechanisms by which extracellular matrix influences vertebrate heart development.

Key words

Heart extracellular matrix development embryonic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alho, A. M., and Underhill, C. B., The hyaluronate receptor is preferentially expressed on proliferating epithelial cells. J. Cell Biol.108 (1989) 1557–1565.CrossRefPubMedGoogle Scholar
  2. 2.
    Argraves, W. S., Dickerson, K., Burgess, W. H., and Ruoslahti, E., Fibulin, a novel protein that interacts with the fibronectin receptor B subunit cytoplasmic domain. Cell58 (1989) 623–629.CrossRefPubMedGoogle Scholar
  3. 3.
    Argraves, W. S., Tran, H., Burgess, W. H., and Dickerson, K., Fibulin is an extracellular matrix and plasma glycoprotein with repeated domain structure. J. Cell Biol.111 (1990) 3155–3164.CrossRefPubMedGoogle Scholar
  4. 4.
    Armstrong, P. B., and Armstrong, M. T., A role for fibronectin in cell sorting. J. Cell Sci.69 (1984) 179–197.PubMedGoogle Scholar
  5. 5.
    Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., and Seed, B., CD44 is the principal cell surface receptor for hyaluronate. Cell61 (1990) 1303–1313.PubMedGoogle Scholar
  6. 6.
    Balbona, K., Tran, H., Godyna, S., Ingham, K. C., Strickland, D. K., and Argraves, W. S., Fibulin binds to itself and to the carboxyl-terminal heparin-binding region of fibronectin. J. biol. Chem.267 (1992) 20120–20125.PubMedGoogle Scholar
  7. 7.
    Baldwin, H. S., and Buck, C. A., Integrins and other cell adhesion molecules in cardiac development. Trends cardiovasc. Med.4 (1994) 178–187.CrossRefGoogle Scholar
  8. 8.
    Baldwin, H. S., Lloyd, T. R., and Solursh, M., Hyaluronate degradation affects ventricular function of the early postlooped embryonic rat heart in situ. Circ. Res.74 (1994) 244–252.PubMedGoogle Scholar
  9. 9.
    Bernanke, D. H., and Markwald, R. R., Cardiac cushion morphogenetic events in a three-dimensional collagen lattice culture model. Devl Biol.91 (1982) 235–245.CrossRefGoogle Scholar
  10. 10.
    Bogers, A. J. J. C., Gittenberger-de Groot, A. C., Poelmann, R. E., Peault, B. M., and Huysmans, H. A., Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat. Embryol.180 (1989) 437–441.CrossRefPubMedGoogle Scholar
  11. 11.
    Borg, T. K., Raso, D. S., and Terracio, L., Potential role of the extracellular matrix in postseptation development of the heart. Ann. N. Y. Acad. Sci.588 (1990) 87–92.PubMedGoogle Scholar
  12. 12.
    Burroughs, C. L., Watanabe, M., and Morse, D. E., Distribution of the neural cell adhesion molecule (NCAM) during heart development. J. molec. cell. Cardiol.23 (1991) 1411–1422.CrossRefGoogle Scholar
  13. 13.
    Burry, A. F., Supra-aortic stenosis associated with Marfan's syndrome. Br. Heart J.20 (1958) 143–146.PubMedGoogle Scholar
  14. 14.
    Carver, W., Price, R. L., Raso, D. S., Terracio, L., and Borg, T. K., Distribution of B-1 integrin in the developing rat heart. J. Histochem. Cytochem.42 (1994) 167–175.PubMedGoogle Scholar
  15. 15.
    Chen, Y., Faraco, J., Yin, W., Germiller, J., Francke, U., and Bonadio, J., Structure, chromosomal localization, and expression pattern of the murine Magp gene. J. biol. Chem.268 (1993) 27381–27389.PubMedGoogle Scholar
  16. 16.
    Chin, C., Gandour-Edwards, R., Oltjen, S., and Choy, M., Fate of the atrioventricular endocardial cushions in the developing chick heart. Pediatr. Res.32 (1992) 390–393.PubMedGoogle Scholar
  17. 17.
    Chiquet-Ehrismann, R., Mackie, E. J., Pearson, C. A., and Sakakura, T., Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell47 (1986) 131–139.CrossRefPubMedGoogle Scholar
  18. 18.
    Cleary, E. G., and Gibson, M. A., Elastin-associated microfibrils and microfibrillar proteins. Int. Rev. Connect. Tissue Res.10 (1983) 97–101.PubMedGoogle Scholar
  19. 19.
    Corless, C. L., Mendoza, A., Collins, T., and Lawler, J., Colocalization of thrombospondin and syndecan during murine development. Devl. Dyn.193 (1992) 346–358.Google Scholar
  20. 20.
    Crossin, K. L., and Hoffman, S., Expression of adhesion molecules during the formation and differentiation of the avian endocardial cushion tissue. Devl Biol.145 (1991) 277–286.CrossRefGoogle Scholar
  21. 21.
    Curran, M. E., Atkinson, D. L., Ewart, A. K., Morris, C. A., Leppert, M. F., and Keating, M. T., The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell73 (1993) 159–168.CrossRefPubMedGoogle Scholar
  22. 22.
    Davis, C. L., The cardiac jelly of the chick embryo. Anat. Rec.27 (1924) 201–202.Google Scholar
  23. 23.
    Davis, L. A., Ogle, R. C., and Little, C. D., Embryonic heart mesenchymal cell migration in laminin. Devl Biol.133 (1989) 37–43.CrossRefGoogle Scholar
  24. 24.
    de la Cruz, M. V., Sanchez-Gomez, C., and Palomino, M. A., The primitive cardiac regions in the straight tube heart (stage 9-) and their anatomical expression in the mature heart: an experimental study in the chick embryo. J. Anat.165 (1989) 121–131.Google Scholar
  25. 25.
    Dietz, H., Cutting, G., Pyertiz, R., Maslen, C., Sakai, L., Corson, G., Puffenberger, E., Hamosh, A., Nanthakumar, E., Curristin, S., Stetten, G., Meyers, D., and Francomano, C., Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature352 (1991) 337–339.CrossRefPubMedGoogle Scholar
  26. 26.
    Drake, C. J., Bouchey, D. M., Walter, L., Reichardt, L. F., and Little, C. D., Embryonic vitronectin. submitted 1995.Google Scholar
  27. 27.
    Drake, C. J., Davis, L. A., Walters, L., and Little, C. D., Avian vasculogenesis and the distribution of collagens I, IV, laminin, and fibronectin in the heart primordia. J. expl. Zool.255 (1990) 309–322.CrossRefGoogle Scholar
  28. 28.
    Drake, C. J., and Jacobson, A. G., A survey by scanning electron microscopy of the extracellular matrix and endothelial compounds of the primordial chick heart. Anat. Rec.222 (1988) 391–400.CrossRefPubMedGoogle Scholar
  29. 29.
    Eisenberg, R., Young, D., Jacovson, B., and Voito, A., Familial supravalvular aortic stenosis. Am. J. Dis. Child.108 (1964) 341–347.PubMedGoogle Scholar
  30. 30.
    Ewart, A. K., Morris, C. A., Ensing, G. J., Loker, J., Moore, C., Leppart, M., and Keating, M., A human vascular disorder, supravalvular aortic stenosis, maps to chormosome 7. Proc. natl Acad. Sci. USA90 (1993) 3226–3230.PubMedGoogle Scholar
  31. 31.
    Fessler, J. H., A structural function of mucopolysaccharide in connective tissue. Biochem. J.76 (1960) 124–132.PubMedGoogle Scholar
  32. 32.
    Funderburg, F. M., and Markwald, R. R., Conditioning of native substrates by chondroitin sulfate proteoglycans during cardiac mesenchymal cell migration. J. Cell Biol.103 (1986) 2475–2487.CrossRefPubMedGoogle Scholar
  33. 33.
    Gallagher, B. C., Sakai, L. Y., and Little, C. D., Fibrillin delineates the primary axis of the early avian embryo. Devl Dyn.196 (1993) 70–78.Google Scholar
  34. 34.
    Gallagher, J. T., Structure and function of heparan sulfate proteoglycans. Biochem J.236 (1986) 313–325.PubMedGoogle Scholar
  35. 35.
    Garcia-Martinez, V., Sanchez-Quintana, Q., and Hurle, J. M., Histogenesis of the semilunar valves: an immunohistochemical analysis of tenascin and type-I collagen distribution in developing chick heart valves. Cell Tissue Res.259 (1990) 299–304.CrossRefPubMedGoogle Scholar
  36. 36.
    Garcia-Martinez, V., and Schoenwolf, G. C., Primitive-streak origin of the cardiovascular system in avian embryos. Devl Biol.159 (1993) 706–719.CrossRefGoogle Scholar
  37. 37.
    George, E. L., Georges-Labouesset, E. N., Patel-King, R., Rayburn, H., and Hynes, R. O., Defects of mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development119 (1993) 1079–1091.PubMedGoogle Scholar
  38. 38.
    Gessner, I. H., Lorinez, A. E., and Bostrom, H., Acid mucopolysaccharide content of the cardiac jelly of the chick embryo. J. expl Zool.160 (1965) 291–298.CrossRefGoogle Scholar
  39. 39.
    Gibson, M. A., Kumaratilake, J. S., and Clery, E. G., The protein components of the 12-nanometer microfibrils of elastic and nonelastic tissues. J. biol. Chem.264 (1989) 4590–4598.PubMedGoogle Scholar
  40. 40.
    Glukhova, M. A., and Thiery, J. P., Fibronectin and integrins in development. Semin. Cancer Biol.4 (1993) 215–218.PubMedGoogle Scholar
  41. 41.
    Grobstein, C., Tissue interaction in the morphogenesis of mouse embryonic rudiments in vitro, in: Aspects of Synthesis and Order in Growth, pp. 233–256. Ed. G. Rudnick. Princeton University Press, Princeton, New Jersey 1955.Google Scholar
  42. 42.
    Hamburger, V., and Hamilton, H. L., A series of normal stages in the development of the chick embryo. J. Morphol.88 (1951) 49–92.CrossRefGoogle Scholar
  43. 43.
    Har-el, R., and Tanzer, M. L., Extracellular matrix 3: evolution of the extracellular matrix in invertebrates. FASEB J.7 (1993) 1115–1123.PubMedGoogle Scholar
  44. 44.
    Hay, D. A., Markwald, R. R., and Fitzharris, T. P., Selected views of early heart development by scanning electron microscopy. Scanning Electron Microscopy 1984 (L) 1983–1993.Google Scholar
  45. 45.
    Hay, E. D., Collagen and embryonic development, in: Cell Biology of Extracellular Matrix, pp. 379–409. Ed. E. D. Hay. Plenum Publishing Corporation, New York 1981.Google Scholar
  46. 46.
    Hay, E. D., Extracellular matrix. J. Cell Biol.91 (1981) 205s-223s.CrossRefPubMedGoogle Scholar
  47. 47.
    Heintzberger, C. F. M., Development of myocardial vascularisation in the rat. Acta Morphol. Neerl. Scand.21 (1983) 267–284.PubMedGoogle Scholar
  48. 48.
    Hoffman, S., Crossin, K. L., and Edelman, G. M., Molecular forms, binding functions, and developmental expression patterns of cytotactin and cytotactin-binding proteoglycan, an interactive pair of extracellular matrix molecules. J. Cell Biol.106 (1988) 519–532.CrossRefPubMedGoogle Scholar
  49. 49.
    Hoffman, S., Crossin, K. L., Prediger, E. A., Cunningham, B. A., and Edelman, G., Expression and function of cell adhesion molecules during early development of the heart. Ann N. Y. Acad. Sci.588 (1990) 73–86.PubMedGoogle Scholar
  50. 50.
    Holzenberger, M., Ayer-Le Lievre, A., and Robert, L., Tropoelastin gene expression in the developing vascular system of the chicken: an in situ hybridization study. Anat. Embryol.188 (1993) 481–492.CrossRefPubMedGoogle Scholar
  51. 51.
    Horwitz, A., Duggan, F., Buck, C., Berkerle, M. C., and Burridge, K., Interaction of plasma membrane fibronectin receptor with talin — a transmembrane linkage. Nature320 (1986) 531–533.CrossRefPubMedGoogle Scholar
  52. 52.
    Hynes, R. O., Integrins: a family of cell surface receptors. Cell48 (1987) 549–554.CrossRefPubMedGoogle Scholar
  53. 53.
    Icardo, J. M., and Manasek, F. J., Fibronectin distribution during early chick embryo heart development. Devl Biol.95 (1983) 19–30.Google Scholar
  54. 54.
    Iruela-Arispe, M. L., Liska, D. J., Sage, E. H., and Bornstein, P., Differential expression of thrombospondin 1, 2, and 3 during development. Devl Dyn.197 (1993) 40–56.Google Scholar
  55. 55.
    Johnson, R. C., Manasek, F. J., Vinson, W. C., and Seyer, J. M., The biochemical and ultrastructural demonstration of collagen during early heart development. Devl Biol.36 (1974). 252–271.Google Scholar
  56. 56.
    Johnston, P. M., and Comar, C. L., Autoradiographic studies of the utilization of S 35-sulfate by the chick embryo. J. biophys. biochem. Cytol.3 (1957) 231–245.PubMedGoogle Scholar
  57. 57.
    Jones, P. L., Schmidhauser, C., and Bissell, M. J., Regulation of gene expression and cell function by extracellular matrix. Crit. Rev. Eukaryot. Gene Expr.3 (1993) 137–154.PubMedGoogle Scholar
  58. 58.
    Kitten, G. T., Localization and functional interactions of fibronectin and associated basement membrane proteins during embyronic heart development. Ph.D. Texas Technical University, 1984.Google Scholar
  59. 59.
    Kitten, G. T., Markwald, R. R., and Bolender, D. L., Distribution of basement membrane antigens in cryopreserved early embryonic hearts. Anat. Rec.217 (1987) 379–390.PubMedGoogle Scholar
  60. 60.
    Kluge, M., Mann, K., Dziadek, M., and Timpl, R., Characterization of a novel calcium-binding 90-kDa glycoprotein (BM-90) shared by basement membranes and serum. Eur. J. Biochem.193 (1990) 651–659.PubMedGoogle Scholar
  61. 61.
    Knudson, C. B., and Knudson, W., Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J.7 (1993) 1233–1241.PubMedGoogle Scholar
  62. 62.
    Krug, E., Mjaatvedt, C. H., and Markwald, R. R., Extracellular matrix from embryonic myocardium elicits an early morphogenetic event in cardiac endothelial differentiation. Devl Biol.120 (1987) 348–355.Google Scholar
  63. 63.
    Krug, E. L., Runyan, R. B., and Markwald, R. R., Protein extracts from early embryonic hearts initiate cardiac endothelial cytodifferentiation. Devl Biol.112 (1985) 414–426.Google Scholar
  64. 64.
    Lee, B., Godfrey, M., Vitale, E., Hori, H., Mattei, M.-G., Sarfarazi, M., Tsipouras, P., Ramirez, F., and Hollister, D. W., Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature352 (1991) 330–334.PubMedGoogle Scholar
  65. 65.
    Linask, K. K., and Lash, J. W., Precardiac cell migration: fibronectin localization at mesoderm-endoderm interface during directional movement. Devl Biol.114 (1986) 87–101.Google Scholar
  66. 66.
    Linask, K. K., and Lash, J. W., A role for fibronectin in the migration of avian precardiac cells: I. dose-dependent effects of fibronectin antibody. Devl Biol.129 (1988) 315–323.Google Scholar
  67. 67.
    Linask, K. K., and Lash, J. W., A role for fibronectin in the migration of avian precardiac cells: II. rotation of the heartforming region during different stages and its effects. Devl Biol.129 (1988) 324–329.Google Scholar
  68. 68.
    Little, C. D., Piquet, D. M., Davis, L. A., Walters, L., and Drake, C. J., Distribution of laminin, collagen type IV, collagen type I, and fibronectin in chicken cardiac jelly/basement membrane. Anat. Rec.224 (1989) 417–425.PubMedGoogle Scholar
  69. 69.
    Loeber, C. P., and Runyan, R. B., A comparison of fibronectin, laminin, and galactosyltransferase adhesion mechanisms during embryonic cardiac mesenchymal cell migration in vitro. Devl Biol.140 (1990) 401–412.Google Scholar
  70. 70.
    Lopez, C. A., and Martinez, M. S., The importance of extracellular matrix components in development of the embryonic chick heart. Persp. cardiovasc. Res.5 (1981) 167–179.Google Scholar
  71. 71.
    Lundgren, E., Gullberg, D., Rubin, K., Borg, T. K., Terracio, M. J., and Terracio, L., In vitro studies on adult cardiac myocytes: attachment and biosynthesis of collagen type IV and laminin. J. cell. Physiol.136 (1988) 43–53.PubMedGoogle Scholar
  72. 72.
    Manasek, F. J., Heart development: interactions involved in cardiac morphogenesis, in: The Cell Surface in Animal Embryogenesis and Development, pp. 545–598. Eds. G. Poste and G. L. Nicholson. Elsevier/North-Holland, Amsterdam 1976.Google Scholar
  73. 73.
    Manasek, F. J., Macromolecules of the extracellular compartment of embryonic and mature hearts. Circ. Res.38 (1976) 331–337.PubMedGoogle Scholar
  74. 74.
    Manasek, F. J., Structural glycoproteins of the embryonic cardiac extracellular matrix. J. molec. cell. Cardiol.9 (1977) 425–439.Google Scholar
  75. 75.
    Manasek, F. J., Icardo, J., Nakamura, A., and Sweeney, L., Cardiogenesis: developmental mechanisms and embryology, in: The Heart and Cardiovascular System, pp. 965–985. Ed. H. A. Fozzard. Raven Press, New York 1986.Google Scholar
  76. 76.
    Manesek, F. J., Kulikowski, R. R., Nakamura, A., Nguyenphuc, W., and Lacktis, J. W., Early heart development: a new model of cardiac morphogenesis, in: Growth of the Heart in Health and Disease, pp. 105–130. Ed. R. Zak. Raven Press, New York 1984.Google Scholar
  77. 77.
    Manasek, F. J., Reid, M., Vinson, W., Seyer, J., and Johnson, R., Glycosaminoglycan synthesis by the early embryonic chick. Devl Biol.35 (1973) 332–348.Google Scholar
  78. 78.
    Markwald, R. R., Fitzharris, T. P., Bank, H., and Manasek, F. J., Strutural analysis on the material organization of glycosaminoglycans in developing endocardial cushions. Devl Biol.62 (1978) 292–316.Google Scholar
  79. 79.
    Markwald, R. R., Fitzharris, T. P., and Manasek, F. J., Structural development of endocardial cushions. Am. J. Anat.148 (1977) 85–120.PubMedGoogle Scholar
  80. 80.
    Markwald, R. R., Fitzharris, T. P., and Smith, W. N. A., Structural analysis of endocardial cytodifferentiation. Devl. Biol.42 (1975) 160–180.Google Scholar
  81. 81.
    Markwald, R. R., Krug, E. L., Runyan, R. B., and Kitten, G. T., Proteins in cardiac jelly which induce mesenchyme formation, in: Cardiac Morphogenesis, pp. 60–68. Eds. V. J. Ferrans, G. Rosenquist and C. Weinstein. Elsevier, New York 1985.Google Scholar
  82. 82.
    Markwald, R. R., Mjaatvedt, C. H., Krug, E. L., and Sinning, A. R., Inductive interactions in heart development: role of cardiac adherons in cushion tissue formation. Ann. N. Y. Acad. Sci.588 (1990) 13–25.PubMedGoogle Scholar
  83. 83.
    Markwald, R. R., Runyan, R. B., Kitten, G. T., Funderberg, F. M., Bernanke, D. H., and Brauer, P. R., Use of collagen gel cultures to study heart development: proteoglycan and glycoprotein interactions during the formation of endocardial cushion tissue. in: The Role of the Extracellular Matrix in Development, pp. 323–350. Ed. R. L. Trelstad. A. R. Liss, New York 1984.Google Scholar
  84. 84.
    Markwald, R. R., and Smith, W. N. A., Distribution of mucosubstances in the developing rat heart. J. Histochem. Cytochem.20 (1972) 896–907.PubMedGoogle Scholar
  85. 85.
    Martin, G. R., and Timpl, R., Laminin and other basement membrane components. A. Rev. Cell Biol.3 (1987) 57–85.Google Scholar
  86. 86.
    Mikawa, T., Borisov, A., Brown, A. M. C., and Fischman, D. A., Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. formation of the ventricular myocardium. Devl Dyn.193 (1992) 11–23.Google Scholar
  87. 87.
    Miyake, K., Underhill, C. B., Lesley, J., and Kincade, P. W., Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J. expl. Med.172 (1990) 69–75.Google Scholar
  88. 88.
    Mjaatvedt, C. H., Krug, E. L., and Markwald, R. R., An antiserum (ES1) against a particulate form of extracellular matrix blocks the transition of cardiac endothelium into mesenchyme in culture. Devl Biol.145 (1991) 219–230.Google Scholar
  89. 89.
    Mjaatvedt, C. H., Lepera, R. C., and Markwald, R. R., Myocardial specificity for initiating endothelial-mesenchymal cell transition in embryonic chick heart correlates with a particulate distribution of fibronectin. Devl Biol.119 (1987) 59–67.Google Scholar
  90. 90.
    Mjaatvedt, C. H., and Markwald, R. R., Induction of an epithelial-mesenchymal transition by an in vivo adheron like complex. Devl Biol.136 (1989) 118–128.Google Scholar
  91. 91.
    Noble, N. A., Harper, J. R., and Border, W. A., In vivo interactions of TGF-beta and extracellular matrix. Probl. Growth Factor Res.4 (1992) 369–382.Google Scholar
  92. 92.
    Noden, D. M., Embryonic origins and assembly of blood vessels. Am. Rev. respir. Dis.140 (1989) 1097–1103.PubMedGoogle Scholar
  93. 93.
    Orkin, R. W., and Toole, B. P., Hyaluronidase activity and hyaluronate content of the developing chick embryo heart. Devl Biol.66 (1978) 308–320.Google Scholar
  94. 94.
    Pan, T.-C., Kluge, M., Zhang, R.-Z., Mayer, U., Timpl, R., and Chu, M.-L., Sequence of extracellular mouse protein BM-90/fibulin and its calcium-dependent binding to other basement membrane ligands. Eur. J. Biochem.215 (1993) 733–740.PubMedGoogle Scholar
  95. 95.
    Pan, T.-C., Sasaki, T., Zhang, R.-Z., Fassler, R., Timpl, R., and Chu, M.-L., Structure and expression of fibulin-2, a novel extracellular matrix protein with multiple EGF-like repeats and consensus motifs for calcium-binding. J. Cell Biol.123 (1993) 1269–1277.PubMedGoogle Scholar
  96. 96.
    Poelmann, R. E., Gittenberger-de Groot, A. C., Mentink, M. M. T., Bokenkamp, R., and Hogers, B., Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ. Res.73 (1993) 559–568.PubMedGoogle Scholar
  97. 97.
    Poole, T. J., and Coffin, J. D., Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J. expl Zool.251 (1989) 224–231.Google Scholar
  98. 98.
    Powers, D. A., Fish as model systems. Science246 (1989) 352–358.PubMedGoogle Scholar
  99. 99.
    Preissner, K. T., Structure and biological role of vitronectin. A. Rev. Cell Biol.7 (1991) 275–310.Google Scholar
  100. 100.
    Price, R. L., Nakagawa, M., Terracio, L., and Borg, T. K., Ultrastructural localization of laminin on in vivo embryonic, neonatal, and adult rat cardiac myocytes and in early rat embryos raised in whole-embryo culture. J. Histochem. Cytochem.40 (1992) 1373–1381.PubMedGoogle Scholar
  101. 101.
    Rawles, M. E., The heart-forming areas of the early blastoderm. Physiol. Zool.16 (1943) 22–42.Google Scholar
  102. 102.
    Rezaee, M., Isokawa, K., Halligan, N., Markwald, R. R., and Krug, E. L., Identification of an extracellular 130-kDa protein involved in early cardiac morphogenesis. J. biol. Chem.268 (1993) 14411–14414.Google Scholar
  103. 103.
    Risau, W., and Lemmon, V., Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Devl Biol.125 (1988) 441–450.Google Scholar
  104. 104.
    Roark, E. F., Keene, D. R., Haudenschild, C. C., Godyna, S., Little, C. D., and Argraves, W. S., Fibulin-1 expression in human tissues and cell lines: fibulin-1 is a component of the amorphous cores of connective tissue elastic fibers. J. Histochem. Cytochem.43 (1995) 401–411.PubMedGoogle Scholar
  105. 105.
    Robinson, T. F., Factor, S. M., Capasso, J. M., Whittenburg, J. M., Blumenfeld, O. O., and Seifter, S., Morphology, composition, and function of struts between cardiac myoctyes of rat and hamster. Cell Tissue Res.249 (1987) 247–255.PubMedGoogle Scholar
  106. 106.
    Rooney, P., and Kumar, S., Inverse relationship between hyaluronan and collagens in development and angiogenesis. Differentiation54 (1993) 1–9.PubMedGoogle Scholar
  107. 107.
    Rosenbloom, J., Abrams, W. R., and Mecham, R., Extracellular matrix 4: the elastic fiber. FASEB J.7 (1993) 1208–1218.PubMedGoogle Scholar
  108. 108.
    Rosenquist, G. C., and DeHaan, R. L., Migration of precardiac cells in the chick embryo: a radioautographic study. Carnegie Inst. Wash. Publ. 625, Contrib. Embryol.38 (1966) 111–123.Google Scholar
  109. 109.
    Rosenquist, T. H., McCoy, J. R., Waldo, K. L., and Kirby, M. L., Origin and propagation of elastogensis in the developing cardiovascular system. Anat. Rec.221 (1988) 860–871.PubMedGoogle Scholar
  110. 110.
    Runyan, R. B., and Markwald, R. R., Invasion of mesenchyme into three-dimensional gels: a regional and temporal analysis of interaction in embryonic heart tissue. Devl Biol.95 (1983) 108–114.Google Scholar
  111. 111.
    Ruoslahti, E., and Pierschbacher, M. D., New perspectives in cell adhesion: RGD and integrins. Science238 (1987) 491–497.PubMedGoogle Scholar
  112. 112.
    Sakai, L. Y., Keene, D. R., and Engvall, E., Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J. Cell Biol.103 (1986) 2499–2509.PubMedGoogle Scholar
  113. 113.
    Sinning, A. R., Krug, E. L., and Markwald, R. R., Multiple glycoproteins localize to a particulate form of extracellular matrix in regions of the embryonic heart where endothelial cells transform into mesenchyme. Anat. Rec.232 (1992) 285–292.PubMedGoogle Scholar
  114. 114.
    Spence, S. G., Argraves, W. S., Walters, L., Hungerford, J. E., and Little, C. D., Fibulin is localized at sites of epithelial-mesenchymal transitions in the early avian embryo. Devl Biol.151 (1992) 473–484.Google Scholar
  115. 115.
    Stainier, D. Y. R., and Fishman, M. C., Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Devl Biol.153 (1992) 91–101.Google Scholar
  116. 116.
    Stainier, D. Y. R., Lee, R. K., and Fishman, M. C., Cardiovascular development in the zebrafish: I. Myocardial fate map and heart tube formation. Development119 (1993) 31–40.PubMedGoogle Scholar
  117. 117.
    Stalsberg, H., and DeHaan, R. L., The precardiac areas and formation of the tubular heart in the chick embryo. Devl Biol.19 (1969) 128–159.Google Scholar
  118. 118.
    Sumida, H., Nakamura, H., and Satow, Y., Distribution of vitronectin in the embryonic chick heart during endocardial cell migration. Arch. Histol. Cytol.53 (1990) 81–88.PubMedGoogle Scholar
  119. 119.
    Sumida, H., Nakamura, H., and Yasuda, M., Role of vitronectin in embryonic rat endocardial cell migration in vitro. Cell Tissue Res.268 (1992) 41–49.PubMedGoogle Scholar
  120. 120.
    Terracio, L., Gullberg, D., Rubin, K., and Borg, T. K., Expression of collagen adhesion proteins and their association with the cytoskeleton in cardiac myocytes. Anat. Rec.223 (1989) 62–71.PubMedGoogle Scholar
  121. 121.
    Thompson, R. P., Fitzharris, T. P., Denslow, S., and LeRoy, E. C., Collagen synthesis in the developing chick heart. Tex. Rep. Biol. Med.39 (1979) 305–314.PubMedGoogle Scholar
  122. 122.
    Tidball, J. G., Distribution of collagens and fibronectin in the subepicardium during avian cardiac development. Anat. Embryol.185 (1992) 155–162.PubMedGoogle Scholar
  123. 123.
    Toole, B. P., Proteoglycans and hyaluronan in morphogenesis and differentiation, Cell Biology of the Extracellular Matrix, pp. 305–341. Ed. B. Hay. Plenum Press, New York 1991.Google Scholar
  124. 124.
    Turley, E. A., The role of a cell-associated hyaluronan-binding protein in fibroblast behaviour, in: The Biology of Hyaluronate, pp. 121–133. Eds. P. Evered and J. Whelan. Ciba Foundations Symp. 1989.Google Scholar
  125. 125.
    Wenink, A. C. G., and Gittenberger-de Groot, A. C., Embryology of the mitral valve. Int. J. Cardiol.11 (1986) 75–84.PubMedGoogle Scholar
  126. 126.
    Werb, Z., Tremble, P., Behrendtsen, O., Crowley, E., and Damsky, C. H., Signal transduction through the fibronectin receptor induces collagenase and stromelysis gene expression. J. Cell Biol.109 (1989) 877–889.PubMedGoogle Scholar
  127. 127.
    Wheatley, S. C., Isacke, C. M., and Crossley, P. H., Restricted expression of the hyaluronan receptor, CD44, during postimplantation mouse embryogenesis suggests key roles in tissue formation and patterning. Development119 (1993) 295–306.PubMedGoogle Scholar
  128. 128.
    Wunsch, A. M., Little, C. D., and Markwald, R. R., Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3, an antigen of the endocardial cushion tissue. Devl Biol.165 (1994) 585–601.Google Scholar
  129. 129.
    Yin, W., Smiley, E., Germiller, J., Sanguineti, C., Lawton, T., Pereira, L., Ramirez, F., and Bonadio, J., Primary structure and developmental expression of Fbn-1, the mouse fibrillin gene. J. biol. Chem.270 (1995) 1798–1806.PubMedGoogle Scholar
  130. 130.
    Yost, H. J., Regulation of vertebrate left-right asymmetries by extracellular matrix. Nature357 (1992) 158–161.PubMedGoogle Scholar
  131. 131.
    Zhang, H., Apfelroth, S. D., Hu, W., Davis, E. C., Sanguineti, C., Bonadio, J., Mecham, R. P., and Ramirez, F., Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J. Cell Biol.124 (1994) 855–863.PubMedGoogle Scholar
  132. 132.
    Zhang, H.-Y., Chu, M.-L., Pan, T.-C., Sasaki, T., Timpl, R., and Ekblom, P., Extracellular matrix protein fibulin-2 is expressed in the embryonic endocardial cushion tissue and is a prominent component of valves in adult heart. Devl Biol.167 (1995) 18–26.Google Scholar
  133. 133.
    Zhang, H.-Y., Kluge, M., Timpl, R., Chu, M.-L., and Ekblom, P., The extracellular matrix glycoproteins BM-90 and tenascin are expressed in the mesenchyme at sites of endothelial-mesenchymal conversion in the embryonic mouse heart. Differentiation52 (1993) 211–220.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1995

Authors and Affiliations

  • C. D. Little
    • 1
  • B. J. Rongish
    • 1
  1. 1.Cardiovascular Developmental Biology Center, Department of Cell BiologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations