, Volume 50, Issue 6, pp 551–557 | Cite as

The use of museum specimens to reconstruct the genetic variability and relationships of extinct populations

  • M. S. Roy
  • D. J. Girman
  • A. C. Taylor
  • R. K. Wayne
Multi-Author Reviews


In this review, we discuss the use of DNA from museum specimens to address conservation genetic questions. We provide four examples from our previous studies of the northern hairy-nosed wombat, African wild dog, Ethiopian wolf and red wolf. These species were genetically surveyed using two molecular approaches: first, analysis of short sequences in the mitochondrial genome using species-specific primers, and second, analysis of hypervariable microsatellite loci. The studies demonstrate that museum-derived DNA adds an important dimension to the genetic study of extant populations. Inaccessible populations can be studied, and both the loss of genetic variation and its distribution over space and time can be better understood. Finally, analysis of additional museum material provides definitive evidence for a hybrid origin of the red wolf.

Key words

Ancient DNA conservation genetics mtDNA microsatellites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avise, J. C., A role for molecular genetics in the recognition and conservation of endangered species. Trends Ecol. Evol.9 (1989) 279–281.CrossRefGoogle Scholar
  2. 2.
    Avise, J. C., Molecular population structure and the biogeographic history of regional faunas: a case history with lessons for conservation biology. OIKOS63 (1992) 62–76.Google Scholar
  3. 3.
    Avise, J. C., and Ball, R. M., Principles of genealogical concordance in species concepts and biological taxanomy, in: Oxford Surveys in Evolutionary Biology, vol. 7, pp. 45–67. Eds D. Futuyma and J. Antonovics. Oxford University Press, Oxford 1990.Google Scholar
  4. 4.
    Boecklen, W. J., Optimal design of nature reserves: consequences of genetic drift. Biol. Conserv.38 (1986) 323–338.CrossRefGoogle Scholar
  5. 5.
    Bonnefille, R., Roeland, J. C., and Guiot, J., Temperature and rainfall estimates for the past 40,000 years in equatorial Africa. Nature346 (1990) 347–349.CrossRefGoogle Scholar
  6. 6.
    Carbyn, L., Gray wolf and red wolf, in: Wild Furbearer Management and Conservation in North America, pp 358–378. Eds M. Novak, J. A. Baker, M. E. Obbard and B. Malloch. Ministry of Natural Resources, Ontario, Canada 1987.Google Scholar
  7. 7.
    Crossman, D. G., Population ecology and diet of the northern hairy-nosed wombat [Lasiorhinus krefftii (Owen)]. Report to World Wildlife, Australia 1988.Google Scholar
  8. 8.
    Johnson, C. N., and Crossman, D. G., Dispersal and social organization in the northern hairy nosed wombat. J. Zool.225 (1991) 606–615.Google Scholar
  9. 9.
    Dietrich, W., Katz, H., Lincoln, S. E., Shin, H. S., Friedman, J., Dracopoli, N., and Lander, E. S., A genetic map of the mouse suitable for typing intraspecific crosses. Genetics131 (1992) 423–447.PubMedGoogle Scholar
  10. 10.
    Estes, R. D., and Goddard, J., Prey selection and hunting behavior of the African wild dog. J. Wildl. Mgmt31 (1967) 52–70.Google Scholar
  11. 11.
    Frame, L. H., and Fanshawe, J. H., Status of the African wild dog (Lycaon pictus), in: An Action Plan and Population Viability Assessment for African Wild Dogs. Eds J. R. Ginsberg and D. W. MacDonald. World Conservation Union, Gland 1993.Google Scholar
  12. 12.
    Fuller, T. K., and Kat, P. W., Movements, activity and prey relationships of African wild dogs (Lycaon pictus) near Aitong, Southwestern Kenya. Afr. J. Ecol.28 (1990) 313–323.Google Scholar
  13. 13.
    Ginsberg, J. R., and MacDonald, D. W., Foxes, Wolves, Jackals and Dogs. An Action Plan for the Conservation of Canids. International Union for the Conservation of Nature and Natural Resources. Gland 1990.Google Scholar
  14. 14.
    Girman, D. J., Kat, P. W., Mills, G., Ginsberg, J., Fanshaw, J., Fitzgibbon, C., Borner, M., Wilson, V., Laurenson, K., and Wayne, R. K., Molecular genetic and morphological analyses of the African Wild Dog (Lycaon pictus). J. Hered.84 (1994) 450–459.Google Scholar
  15. 15.
    Gottelli, D., and Sillero-Zubiri, C., The Simien Jackal: Ecology and Conservation. Wildlife Conservation International, New York 1990.Google Scholar
  16. 16.
    Gottelli, D., and Sillero-Zubiri, C., The Ethiopian Wolf—an endangered endemic canid. Oryx26 (1992) 205–214.Google Scholar
  17. 17.
    Gottelli, D., Sillero-Zubiri, C., Applebaum, G. D., Roy, M. S., Girman, D. J., Garcia-Moreno, J., Ostrander, E. A., and Wayne, R. K., Molecular genetics of the most endangered canid: The Ethiopian Wolf,Canis Simensis. Molec. Ecol. (1994).Google Scholar
  18. 18.
    Höss, M., Kohn, M., Pääbo, S., Knauer, F., and Schroder W., Excremental analysis of PCR. Nature359 (1992) 199.CrossRefPubMedGoogle Scholar
  19. 19.
    Kingdon, J., Island Africa. Collins, London 1990.Google Scholar
  20. 20.
    Jenks, S., and Wayne, R. K., Problems and policy for a species threatened by hybridization: the red wolf as a case study, in: Wildlife 2001: Populations, pp. 237–251. Eds D. R. McCullough and R. H. Barrety. Elsevier Applied Science, London 1992.Google Scholar
  21. 21.
    Litt, M., and Luty, J. A., A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. hum. Genet44 (1989) 397–401.PubMedGoogle Scholar
  22. 22.
    Mace, G. M., Genetic management of small populations. Int. Zoo Yb.24/25 (1986) 167–174.Google Scholar
  23. 23.
    Mech, L. D., The wolf: the ecology and behavior of an endangered species. Natural History Press, Garden City, New York 1970.Google Scholar
  24. 24.
    Miller, B. J., Anderson, S. H., DonCarlos, M. W., and Thorne, E. T., Biology of the endangered black footed ferret and the role of captive propagation in its conservation. Can. J. Zool.66 (1988) 765–773.Google Scholar
  25. 25.
    Morris, P. A., and Malcolm, J. R. The simien fox in the Bale Mountains. Oryx14 (1977) 151–160.Google Scholar
  26. 26.
    Nowak, R. M., North American quarternary Canis. Monograph No. 6, Museum of Natural History, University of Kansas, Lawrence Kansas 1979.Google Scholar
  27. 27.
    Nowak, R. M., The red wolf is not a hybrid. Conserv. Biol.6 (1992) 592–595.CrossRefGoogle Scholar
  28. 28.
    O'Brien, S. J., Roelke, M. E., Marker, L., Newman, A., Winkler, C. A., Meltzer, D., Colly, L., Evermann, J. F., Bush, M., and Wildt, D. E., Genetic basis for species vulnerability in the cheetah. Science236 (1985) 1428–1434.Google Scholar
  29. 29.
    Ostrander, E. A., Sprague, G. F., and Rine, J., Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dogs. Genomics16 (1992) 207–213.CrossRefGoogle Scholar
  30. 30.
    Pääbo, S., Ancient DNA: Extraction, characterization molecular cloning, and enzymatic amplification. Proc. natl Acad. Sci. USA86 (1989) 1939–1943.PubMedGoogle Scholar
  31. 31.
    Phillips, M. K., and Henry, V. G., Comments on red wolf taxonomy. Conserv. Biol.6 (1992) 596–599.CrossRefGoogle Scholar
  32. 32.
    Quattro, J. M., and Vrijenhoek, R. C., Fitness differences among remnant populations of the endangered sonoran topminnow. Science245 (1989) 976–978.PubMedGoogle Scholar
  33. 33.
    Roy, M. S., Geffen, E., Smith, D., Ostrander, E. A., and Wayne, R. K., Patterns of differentiation hybridization in North American wolf like canids revealed by analysis of microsatellite loci. Molec. Biol. Evol. (1994) in press.Google Scholar
  34. 34.
    Roy, M. S., Geffen, E., and Wayne, R. K., Microsatellite analysis shows the red wolf is a hybrid: The use of a new class of hypervariable loci in population genetics. (1994) submitted.Google Scholar
  35. 35.
    Schaller, G. B., The Serengeti lion: a study of predator-prey relations. University of Chicago Press, Chicago 1972.Google Scholar
  36. 36.
    Shields, G. F., and Wilson, A. C., Calibration of mitochondrial evolution in geese. J. molec. Evol.24 (1987) 212–217.PubMedGoogle Scholar
  37. 37.
    Taberler, P., and Bouvet, J., Bear conservation genetics. Nature358 (1992) 197.CrossRefPubMedGoogle Scholar
  38. 38.
    Tautz, D., Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acid Res.17 (1989) 6463–6471.Google Scholar
  39. 39.
    Tautz, D., Trick, M., and Dover, G. A., Cryptic simplicity in DNA is a major source of genetic variation. Nature322 (1989) 652–656.CrossRefGoogle Scholar
  40. 40.
    Taylor, A. C., Sherwin, W. B., and Wayne, R. K., The use of simple sequence loci to measure genetic variation in bottlenecked species: the decline of the Northern Hairy-Nosed Wombat (Lasiorhinus krefftii). Molec. Ecol. (1994) in press.Google Scholar
  41. 41.
    Thomas, W. K., Pääbo, S., Villablanca, F. X., and Wilson, A. C., Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. J. molec. Evol.31 (1990) 101–112.PubMedGoogle Scholar
  42. 42.
    Towne, B., and Devor, E. J., Effect of storage time and temperature on DNA extracted from whole blood samples. Hum. Biol. (1990) 301–306.Google Scholar
  43. 43.
    Vane-Wright, R. I., Humphries, C. J., and Williams, P. H., What to protect — Systematics and the agony of choice. Biol. Conserv.55 (1991) 235–254.CrossRefGoogle Scholar
  44. 44.
    Wayne, R. K., and Jenks, S. M., Mitochondrial DNA analysis implying extensive hybridization of the endangered red wolfCanis rufus. Nature351 (1991) 565–568.CrossRefGoogle Scholar
  45. 45.
    Wayne, R. K., Lehman, N., Allard, M. W., and Honeycutt, R. L., Mitochondrial variability of the gray wolf — genetic consequences of population decline and habitat fragmentation. Conserv. Biol.6 (1992) 559–569.CrossRefGoogle Scholar
  46. 46.
    Yalden, D. W., The extent of high ground in Ethiopia compared to the rest of Africa. Ethiopian J. Sci.6 (1983) 35–38.Google Scholar
  47. 47.
    Yalden, D. W., and Largen, M. J., The endemic mammals of Ethiopia. Mammalian Reviews22 (1992) 115–150.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • M. S. Roy
    • 1
  • D. J. Girman
    • 2
  • A. C. Taylor
  • R. K. Wayne
    • 1
    • 2
  1. 1.Institute of ZoologyZoological Society of LondonLondon(England, UK)
  2. 2.Department of BiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations