Experientia

, Volume 50, Issue 6, pp 524–529 | Cite as

Ancient DNA: Methodological challenges

  • O. Handt
  • M. Höss
  • M. Krings
  • S. Pääbo
Multi-Author Reviews

Abstract

The study of ancient DNA offers the possibility of following genetic change over time. However, the field is plagued by a problem which is unique in molecular biology-the difficulty of verifying results by reproduction. Some of the reasons for this are technical and derive from the low copy number and damaged state of ancient DNA molecules. Other reasons are the unique nature of many of the objects from which DNA is extracted. We describe methodological approaches with which these problems can be alleviated in order to ensure that results are scientific in the sense that they can be reproduced by others.

Key words

Ancient DNA molecular archaeology PCR contamination DNA damage DNA quantitation inhibition jumping PCR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asimov, I., The Complete Stories. Doubleday, New York 1992.Google Scholar
  2. 2.
    Boom, R., Sol, C. J. A., Salimans, M. M. M., Jansen, C. L., Wertheim-van Dillen, P. M. E., and van der Noordaa, J., Rapid and simple method for purification for nucleic acids. J. clin. Microbiol.28 (1990) 495–503.PubMedGoogle Scholar
  3. 3.
    Cooper, A., Mourer-Chauvire, C., Chambers, G. K., von Haeseler, A., Wilson, A.C., and Pääbo, S., Independent origins of New Zealand moas and kiwis. Proc. natl Acad. Sci. USA89 (1992) 8741–8744.PubMedGoogle Scholar
  4. 4.
    DeSalle, R., Barcia, M., and Wray, C., PCR jumping in clones of 30-million-year-old DNA fragments from amber preserved termites (Mastotermes electrodominicus). Experientia49 (1993) 906–909.PubMedGoogle Scholar
  5. 5.
    Golenberg, E. M., Giannasi, D. E., Clegg, M. T., Smiley, C. J., Durbin, M., Henderson, D., and Zurawski, G., Chloroplast DNA sequence from a MioceneMagnolia species. Nature344 (1990) 656–658.CrossRefPubMedGoogle Scholar
  6. 6.
    Goloubinoff, P., Pääbo, S., and Wilson, A. C., Evolution of maize inferred from sequence diversity of anAdh2 gene segment from archaeological specimens. Proc. natl Acad. Sci. USA90 (1993) 1997–2001.PubMedGoogle Scholar
  7. 6a.
    Handt, O., Richards, M., Trommsdorff, M., Kilger, C., Simanainen, J., Georgiev, O., Bauer, K., Stone, A., Hedges, R., Schaffner, W., Uttermann, G., Sykes, B., and Pääbo, S., Molecular Genetic Analyses of the Tyrolean Ice Man. Science (1994) in press.Google Scholar
  8. 7.
    Höss, M., Kohn, M., Knauer, F., Schröder, W., and Pääbo, S., Excrement analysis by PCR. Nature359 (1992) 199.CrossRefPubMedGoogle Scholar
  9. 8.
    Höss, M., and Pääbo, S., DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Res21 (1993) 3913–3914.PubMedGoogle Scholar
  10. 9.
    Janczewski, D. N., Yuhki, N., Gilbert, D. A., Jefferson, G. T., and O'Brien, S. J., Molecular phylogenetic inference from saber-toothed cat fossils of Rancho La Brea. Proc. natl Acad. Sci. USA89 (1992).Google Scholar
  11. 10.
    Krajewski, C., Driskell, A. C., Baverstock, P. R., and Braun, M. J., Phylogenetic relationships of the thylacine (Mammalia: Thylacinidae) among dasyuroid marsupials: evidence from cytochromeb DNA sequences. Proc. R. Soc. Lond. B250 (1992) 19–27.Google Scholar
  12. 11.
    Lawlor, D. A., Dickel, C. D., Hauswirth, W. W., and Parham, P. Ancient HLA genes from 7500-year-old archaeological remains. Nature349 (1991) 785–788.CrossRefPubMedGoogle Scholar
  13. 12.
    Lindahl, T., Instability and decay of the primary structure of DNA. Nature362 (1993) 709–715.CrossRefPubMedGoogle Scholar
  14. 13.
    Pääbo, S., Ancient DNA: extraction, characterization, molecular cloning and enzymatic amplification. Proc. natl Acad. Sci. USA86 (1989) 1939–1943.PubMedGoogle Scholar
  15. 14.
    Pääbo, S., Irwin, D. M., and Wilson, A. C., DNA damage promotes jumping between templates during enzymatic amplification. J. biol. Chem.265 (1990) 4718–4721.PubMedGoogle Scholar
  16. 15.
    Pääbo, S., and Wilson, A. C., Miocene DNA sequences—a dream come true? Curr. Biol.1 (1991) 45–46.CrossRefPubMedGoogle Scholar
  17. 16.
    Persson, P., A method to recover DNA from ancient bones. Ancient DNA Newsletter1 (1992) 25–27.Google Scholar
  18. 17.
    Poinar, H. N., Cano, R. J., and Poinar Jr, G. O., DNA from an extinct plant. Nature363 (1993) 677.CrossRefGoogle Scholar
  19. 18.
    Sykes, B., Ancient DNA: the past comes alive. Nature352 (1991) 381–382.CrossRefGoogle Scholar
  20. 19.
    Thomas, R. H., Schaffner, W., Wilson, A. C., and Pääbo, S., DNA phylogeny of the extinct marsupial wolf. Nature340 (1989) 465–467.CrossRefPubMedGoogle Scholar
  21. 20.
    Thomas, W. K., Pääbo, S., Villablanca, F. X., and Wilson, A. C., Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. J. molec. Evol.31 (1990) 101–112.PubMedGoogle Scholar
  22. 21.
    Walsh, P. S., Metzger, D. A., and Higuchi, R., Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Bio Techniques10 (1991) 506–513.Google Scholar
  23. 22.
    Wayne, R. K., and Jenks, S. M., Mitochondrial DNA analysis implying extensive hybridization of the endangered red wolfCanis rufus. Nature351 (1991) 565–568.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • O. Handt
    • 1
  • M. Höss
    • 1
  • M. Krings
    • 1
  • S. Pääbo
    • 1
  1. 1.Zoological InstituteUniversity of MunichMunich(Germany)

Personalised recommendations