Advertisement

Zeitschrift für Operations Research

, Volume 21, Issue 3, pp 117–124 | Cite as

Shortest route with time dependent length of edges and limited delay possibilities in nodes

  • J. Halpern
Article

Summary

Few algorithms have been proposed for the solution of the shortest route problem with time dependent lengths of edges. These algorithms are valid only under the assumption that parking in the nodes is unlimited and any desirable delay in departure time from a given node is permitted. This paper considers the case where such an assumption is not acceptable, and presents an efficient algorithm for the solution of the shortest route problem in networks with time dependent lengths of edges and parking regulations at the nodes. Some other possible extensions are discussed.

Keywords

Departure Time Efficient Algorithm Short Route Route Problem Dependent Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Es wird das Problem betrachtet, kürzeste Wege in Graphen zu finden, bei denen die Kantenlängen zeitabhängig sind. Die hierfür bisher vorgeschlagenen Algorithmen sind nur anwendbar, wenn keine Einschränkungen für die Parkmöglichkeiten in den Knoten bestehen. Hier wird ein Algorithmus angegeben, der derartige Einschränkungen berücksichtigt. Einige mögliche Erweiterungen werden diskutiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooke, K.L., andE. Halsey: The Shortest Route Through a Network with Time-Dependent Internodal Transit Times. J. Math. Anal. and Appl.14, 1966, 493–498.Google Scholar
  2. Dreyfus, S.E.: An Appraisal of Some Shortest-Path Algorithms. Opns. Res.17, 1969, 395–412.Google Scholar
  3. Halpern, J., andI. Priess: Shortest Path with Time Constraints on Movement and Parking. O.R. and Statistics Mimeograph Series No. 125, Faculty of Industrial and Management Eng., Technion, Israel 1973.Google Scholar
  4. Priess, I.: Shortest Path Problem in a Network with Restrictions on Movement and Parking. M.Sc. Thesis, Technion, Israel, (in Hebrew), 1973.Google Scholar
  5. Szpigel, B.: Optimal Train Scheduling on a Single Track Railway. OR-72, Proceedings of the Sixth IFORS Conference on O.R., edited by M. Ross, 1973.Google Scholar

Copyright information

© Physica-Verlag 1977

Authors and Affiliations

  • J. Halpern
    • 1
  1. 1.Technion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations