, Volume 48, Issue 10, pp 955–970 | Cite as

Bioaccumulation processes in ecosystems

  • B. Streit


The fate of environmental pollutants — the various isotopes of elements, and inorganic or organic compounds — is a fundamental aspect of ecology and ecotoxicology, and bioaccumulation is a phenomenon often discussed in this context. Human activities have drastically altered natural concentrations of many substances in the environment and added numerous new chemicals. An understanding of the processes of bioaccumulation is important for several reasons. 1) Bioaccumulation in organisms may enhance the persistence of industrial chemicals in the ecosystem as a whole, since they can be fixed in the tissues of organisms. 2) Stored chemicals are not exposed to direct physical, chemical, or biochemical degradation. 3) Stored chemicals can directly affect an individual's health. 4) Predators of those organisms that have bioaccumulated harmful substances may be endangered by food chain effects. While former theories on the processes of bioaccumulation focused on single aspects that affect the extent of accumulation (such as the trophic level within the food chain or the lipophilicity of the chemical), modern theories are based on compartmental kinetics and the integration of various environmental interactions. Concepts include results from quantitative structure-activity relationships (QSAR), pharmacokinetics, ecophysiology and general biology, molecular genetic aspects and selection, and finally the structure of communities and man-made alterations in them.

Key words

Bioaccumulation bioconcentration BCF pesticides ecotoxicology compartment models QSAR food chain atrazine lindane DDT DDE PCB heavy metals plants earthworms birds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, D. H., Compartmental modeling and tracer kinetics, in: Lecture Notes in Biomathematics, vol. 50. Springer, Berlin 1983.Google Scholar
  2. 2.
    Atkins, G. L., Multicompartment Models for Biological Systems. Methuen, England 1969.Google Scholar
  3. 3.
    Banerjee, S., and Baughman, G. L., Bioconcentration factors and lipid solubility. Envir. Sci. Technol.25 (1991) 536–539.Google Scholar
  4. 4.
    Barber, M. C., Suárez, L. A., and Lassiter, R. R., Modeling bioconcentration of nonpolar organic pollutants by fish. Envir. Toxic. Chem.7 (1988) 545–558.Google Scholar
  5. 5.
    Baughman, G. L., and Paris, D. F., Microbial bioconcentration of organic pollutants from aquatic systems — a critical review. CRC Crit. Rev. Microbiol. (1982) 205–227.Google Scholar
  6. 6.
    Bischoff, K. B., Dedrick, R. L., Zaharko, D. S., and Longstreth, J. A., Methotrexate pharmacokinetics. J. pharm. Sci.60 (1971) 1128–1133.PubMedGoogle Scholar
  7. 7.
    Bruggeman, W. A., Martron, L. B. J. M., Kooiman, D., and Hutzinger, O., Accumulation and elimination kinetics of di-, tri- and tetra-chlorobiphenyls by goldfish after dietary and aqueous exposure. Chemosphere10 (1981) 811–832.Google Scholar
  8. 8.
    Bunck, C. M., Prouty, R. W., and Krynitsky, A. J., Residues of organochlorine pesticides and polychloribiphenyls in starlings (Sturnus vulgaris), from the continental United States, 1982. Envir. Monitoring Assessment8 (1987) 59–75.Google Scholar
  9. 9.
    Bungay, P. M., Dedrick, R. L., and Guarino, M., Pharmacokinetic modeling of the dogfish shark (Squalus acanthias): distribution and urinary and biliary excretion of phenol red and its glucuronide. J. Pharmacokinetics Biopharmaceutics4 (1976) 377–388.Google Scholar
  10. 10.
    Carson, E. R., Cobelli, C., and Finkelstein, L., The Mathematical Modeling of Metabolic and Endocrine Systems. John Wiley & Sons, New York 1983.Google Scholar
  11. 11.
    Caspers, N., and Schüürmann, G., Bioconcentration of xenobiotics from the chemical industry's point of view, in: Bioaccumulation in Aquatic Systems, p. 81–98. Eds R. Nagel and R. Loskill. Verlag Chemie, Weinheim 1991.Google Scholar
  12. 12.
    Chiou, C. T., Partition coefficients of organic compounds in lipidwater systems and correlations with fish bioconcentration factors. Envir. Sci. Technol.19 (1985) 57–62.Google Scholar
  13. 13.
    Cobelli, C., and Goffolo, G., Compartmental and noncompartmental models as candidate classes for kinetic modeling, theory and computational aspects, in: Mathematics and Computers in Biomedical Applications. Eds J. Eisenfeld and C. DeLisi. Elsevier Science Publishers B. V. (North-Holland), 1985.Google Scholar
  14. 14.
    Covell, D. G., Berman, M., and Charles, D., Mean residence time —theoretical development, experimental determination, and practical use in tracer analysis. Math. Biosci.72 (1984) 213–244.Google Scholar
  15. 15.
    Dedrick, R. L., and Bischoff, K. B., Species similarities in pharmacokinetics. Fedn Proc.39 (1980) 54–59.Google Scholar
  16. 16.
    Dost, F. H., Die Blutspiegel-Kinetik der Konzentrationsabläufe in der Kreislaufflüssigkeit. 244 pp. G. Thieme, Leipzig 1953.Google Scholar
  17. 17.
    Elster, H.-J., Definitionen, in: Bioakkumulation in Nahrungsketten, p. 78. Eds K. Lillelund, U. de Haar, H.-J. Elster, L. Karbe, J. Schwoerbel and W. Simonis. DFG-Forschungsbericht. Verlag Chemie, Weinheim 1987.Google Scholar
  18. 18.
    Erickson, R. J., and McKim, J. M., A model for exchange of organic chemicals at fish gills: flow and diffusion limitations. Aquatic Toxic.18 (1990) 175–198.Google Scholar
  19. 19.
    Fent, K., Lovas, R., and Hunn, J., Bioaccumulation, elimination and metabolism of triphenyltin chloride by early life stages of minnowsPhoximus phoxinus. Naturwissenschaften78 (1991) 125–127.PubMedGoogle Scholar
  20. 20.
    Forth, W., Henschler, D., and Rummel, W., Allgemeine und spezielle Pharmakologie und Toxikologie; 5. Aufl. BI Wissenschaftsverlag, Mannheim 1987.Google Scholar
  21. 21.
    Fukuto, T. R., Physico-organic chemical approach to the mode of action of organosphosphorous insecticides. Residue Rev.25 (1969) 327–339.PubMedGoogle Scholar
  22. 22.
    Geyer, H., Sheehan, D., Kotzias, D., Freitag, D., and Korte, F., Prediction of ecotoxicological behaviour of chemicals: relationship between physicochemical properties and bioaccumulation of organic chemicals in the mussel. Chemosphere11 (1982) 1121–1134.Google Scholar
  23. 23.
    Gobas, F. A. P. C., and Mackay, D., Dynamics of hydrophobic organic chemical bioconcentration in fish. Envir. Toxic. Chem.6 (1987) 495–504.Google Scholar
  24. 24.
    Guarino, A. M., and Anderson, J. B., Excretion of phenol red and its glucuronide in the dogfish shark. Xenobiotica6 (1976) 1–13.PubMedGoogle Scholar
  25. 25.
    Gunkel, G., and Streit, B., Mechanisms of bioaccumulation of a herbicide (atrazine, s-triazine) in a freshwater mollusc (Ancylus fluviatilis Müll.) and a fish (Coregonus fera Jurine). Water Res.14 (1980) 1574–1584.Google Scholar
  26. 26.
    Haggard, H. W., The absorption, distribution and elimination of ethyl ether. Part I–V. J. biol. Chem.59 (1924) 737–751, 753–770, 771–781, 783–793, 795–802.Google Scholar
  27. 27.
    Hammett, L. P., Some relations between reaction rates and equilibrium constants. Chem. Rev.17 (1935) 125–136.Google Scholar
  28. 28.
    Hammett, L. P., The effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. chem. Soc.59 (1937) 96–103.Google Scholar
  29. 29.
    Hansch, C., and Fujita, T., ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J. Am. chem. Soc.86 (1964) 1616–1626.Google Scholar
  30. 29a.
    Hansch, C., Leo, A., and Taft, R. W., A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev.91 (1991) 165–195.Google Scholar
  31. 30.
    Hansen, O. R., Hammett series with biological activity. Acta chem. scand.16 (1962) 1593–1600.Google Scholar
  32. 31.
    Hawker, D. W., and Connell, D. W., Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotoxic. envir. Saf.11 (1986) 184–197.Google Scholar
  33. 32.
    Karara, A. H., and Hayton, W. L., Pharmacokinetic model for the uptake and disposition of di-2-ethylhexyl phthalate in sheepshead minnowCyprinodon variegatus. Aquat. Toxic.5 (1984) 181–195.Google Scholar
  34. 33.
    Karickhoff, S. W., Brown, D. S., and Scott, T. A., Sorption of hydrophobic pollutants on natural sediments and soil. Water Res.13 (1979) 241–248.Google Scholar
  35. 34.
    Kenaga, E. E., and Goring, C. A., Relationship between water solubility, soil sorption, octanol-water partitioning and bioconcentration of chemicals in biota, in: Aquatic Toxicology, vol. 707. Eds J. G. Eaton et al. ASTM, Philadelphia 1980.Google Scholar
  36. 35.
    Kier, L. B., and Hall, L. H., Molecular Connectivity in Chemistry and Drug Design. Academic Press, New York 1976.Google Scholar
  37. 36.
    Kornmayer, R., and Streit, B., Adsorption und Anreicherung von Atrazin und seinen Abbauprodukten an Flußwassersediment. Arch. Hydrobiol., Suppl.55 (1978) 186–210.Google Scholar
  38. 37.
    Kuhn, K., and Streit, B., Lethal and sublethal effects of fenitrothion on species of the amphipodGammarus. Verh. Dt. zool. Ges.85 (1992) 27.Google Scholar
  39. 38.
    Lahouti, M., and Peterson, P. J., Chromium accumulation and distribution in crop plants. J. Sci. Food Agric.30 (1979) 136–142.Google Scholar
  40. 39.
    Lampert, W., A tracer study on the carbon turnover ofDaphnia pulex. Verh. Internat. Verein. Limnol.19 (1975) 2913–2921.Google Scholar
  41. 40.
    Lillelund, K., de Haar, U., Elster, H.-J., Karbe, L., Schwoerbel, J., Simonis, W., [Eds], Bioakkumulation in Nahrungsketten. DFG-Forschungsbericht. Verlag Chemie, Weinheim 1987.Google Scholar
  42. 41.
    Lutz, R. J., Dedrick, R. L., Mathews, H. B., Elkiung, T. E., and Anderson, M. W., A preliminary pharmacokinetic model for several chlorinated biphenyls in the rat. Drug Metab. Disposition5 (1977) 386–396.Google Scholar
  43. 42.
    Mackay, D., Correlation of bioconcentration factors. Envir. Sci. Technol.16 (1982) 274–278.Google Scholar
  44. 43.
    McKim, J. M., and Schmieder, P. K., Bioaccumulation: Does it reflect toxicity? in: Bioaccumulation in Aquatic Systems, p. 161–188. Eds R. Nagel and R. Loskill. Verlag Chemie, Weinheim 1991.Google Scholar
  45. 44.
    Müller, F., Insektizide, Akarizide und Nematizide, in: Schadwirkungen auf Pflanzen, p. 176–188. Eds B. Hock and E. F. Elstner. BI Wissenschaftsverlag, Mannheim 1988.Google Scholar
  46. 45.
    Müller, F., Fungizide, in: Schadwirkungen auf Pflanzen, p. 152–175. Eds B. Hock and E. F. Elstner. BI Wissenschaftsverlag, Mannheim 1988.Google Scholar
  47. 46.
    Nagel, A., Winter, St., and Streit, B., Residues of chlorinated hydrocarbons in six European bat species. Bat Res. News32 (1990) 20–21.Google Scholar
  48. 47.
    Nagel, R., Metabolismus von 14C Phenol beim Goldfisch (Carassius auratus), der Regenbogenforelle (Salmo gairdneri) und der Goldorfe (Leuciscus ideus melanotus): Thesis University Mainz 1981.Google Scholar
  49. 48.
    Nagel, R., Umweltchemikalien und Fische — Beiträge zu einer Bewertung. Habilitationsschrift, Univ. Mainz 1988.Google Scholar
  50. 49.
    Neely, W. B., Branson, D. R., and Blau, G. E., Partition coefficients to measure bioconcentration potential of organic chemicals in fish. Envir. Sci. Technol.8 (1974) 1113–1115.Google Scholar
  51. 50.
    Nendza, M., QSARs of bioconcentration: Validity assessment of log Pow/log BCF correlations, in: Bioaccumulation in Aquatic Systems, p. 43–66. Eds R. Nagel and R. Loskill. Verlag Chemie, Weinheim 1991.Google Scholar
  52. 51.
    Nieboer, E., and Richardson, H. S., The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Envir. Pollution (Series B)1 (1980) 3–26.Google Scholar
  53. 52.
    Nirmalakhandan, N., and Speece, R. E., Structure-activity relationships. Envir. Sci. Technol.22 (1988) 606–615.Google Scholar
  54. 53.
    Odum, H. T., Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr.27 (1957) 55–112.Google Scholar
  55. 54.
    Ogata, M., Fujisawa, K., Ogino, Y., and Mano, E., Partition coefficients as a measure of bioconcentration potential of crude oil compounds in fish and shellfish. Bull. envir. Contam. Toxic.33 (1984) 561–567.Google Scholar
  56. 55.
    Oliver, B. G., and Niimi, A., Bioconcentration of chlorobenzenes from water to rainbow trout: correlation with partition coefficients and environmental residues. Envir. Sci. Technol.17 (1983) 287–291.Google Scholar
  57. 56.
    Opperhuizen, A., Bioconcentration and biomagnification: is a distinction necessary? in: Bioaccumulation in Aquatic Systems, p. 67–80. Eds R. Nagel and R. Loskill. Verlag Chemie, Weinheim 1991.Google Scholar
  58. 57.
    Opperhuizen, A., Velde, E. W., van den, Gobas, F. A. P. C., Liem, D. A. K., and Steen, J. M. D. van den, Relationships between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere14 (1985) 1871–1896.Google Scholar
  59. 58.
    Ormerod, W. E., Hydrolysis of benzolylcholine derivatives by cholinesterase in serum. Biochem. J.54 (1953) 701–704.PubMedGoogle Scholar
  60. 59.
    Pearson, R. G., Hard and soft acids and bases. J. Am. chem. Soc.85 (1963) 3533–3539.Google Scholar
  61. 60.
    Piiper, J., and Scheid, P., Model analysis of gas transfer in fish gills, in: Fish Physiology, p. 229–262. Eds W. S. Hoar and D. J. Randall. Academic Press Inc., New York 1984.Google Scholar
  62. 61.
    Piiper, J., and Scheid, S., Model analysis of gas transfer in fish gills, in: Fish Physiology, vol. X, Gills. Academic Press, New York 1984.Google Scholar
  63. 62.
    Reeves, R. D., Macfarlane, R. M., and Brooks, R. R., Accumulation of nickel and zinc by western north American genera containing serpentine-tolerant species. Am. J. Bot.70 (1983) 1297–1303.Google Scholar
  64. 63.
    Siré, E.-O., and Streit, B., A multi-input-output linear system theory for pharmacokinetic and bioaccumulation of xenobiotics. J. theor. Biol., submitted (1992).Google Scholar
  65. 64.
    Södergren, A., and Svensson, Bj., Uptake and accumulation of DDT and PCB byEphemera danica (Ephemeroptera) in continuous-flow systems. Bull. envir. Contam. Toxic.9 (1973) 345–350.Google Scholar
  66. 65.
    Still, E. R., and Williams, R. J. P., Potential methods for selective accumulation of nickel(II)ions by plants. J. inorg. Biochem.13 (1980) 35–40.Google Scholar
  67. 66.
    Streit, B., Experimentelle Untersuchungen zum Stoffhaushalt vonAncylus fluviatilis (Gastropoda — Basommatophora). 2. Untersuchungen über Einbau und Umsatz des Kohlenstoffs. Arch. Hydrobiol., Suppl.48 (1975) 1–46.Google Scholar
  68. 67.
    Streit, B., Aufnahme, Anreicherung und Freisetzung organischer Pestizide bei bentischen Süßwasserinvertebraten. 1. Reversible Anreicherung von Atrazin aus der wässrigen Phase. Arch. Hydrobiol., Suppl.55 (1978) 1–23.Google Scholar
  69. 68.
    Streit, B., Uptake, accumulation and release of organic pesticides by benthic invertebrates. 2. Reversible accumulation of lindane, paraquat and 2,4-D from aqueous solution by invertebrates and detritus. Arch. Hydrobiol., Suppl.55 (1979) 324–348.Google Scholar
  70. 69.
    Streit, B., Uptake, accumulation and release of organic pesticides by benthic invertebrates. 3. Distribution of14C-atrazine and14C-lindane in an experimental 3-step food chain microcosm. Arch. Hydrobiol., Suppl.55 (1979) 374–400.Google Scholar
  71. 70.
    Streit, B., Untersuchungen zum Wasseraustausch mittels3H2O zwischen Süßwassertieren und ihrer Umgebung. Revue suisse Zool.87 (1980) 927–935.Google Scholar
  72. 71.
    Streit, B., Water turnover rates and half life times in animals studied by use of labelled and non-labelled water. Minireview. Comp. Biochem. Physiol.72 (1982) 445–454.Google Scholar
  73. 72.
    Streit, B., Effects of high copper concentrations on soil invertebrates (earthworms and orbatid mites): Experimental results and a model. Oecologia (Berlin)64 (1984) 381–388.Google Scholar
  74. 73.
    Streit, B., Chemikalien im Wasser: Experimente und Modelle zur Bioakkumulation bei Süßwassertieren, in: Limnologie aktuell, Band 1: Biologie des Rheins, p. 107–130. Eds R. Kinzelbach and G. Friedrich. G. Fischer, Stuttgart 1990.Google Scholar
  75. 74.
    Streit, B., Lexikon Ökotoxikologie. XIX+731 pp., Verlag Chemie, Weinheim 1991; korrigierter Nachdruck 1992.Google Scholar
  76. 75.
    Streit, B., Zur Ökologie der Tierwelt im Rhein. Verhandlungen der Naturforschenden Gesellschaft BAsel102 (1992) in press.Google Scholar
  77. 76.
    Streit, B., Kissner, R., and Sterf, B., Aufnahme und Proteinbindungen von Schwermetallen (Pb and Cd) in Süßwassermollusken (Ancylus fluviatilis). Verh. Dt. zool. Ges.80 (1987) 299–300.Google Scholar
  78. 77.
    Streit, B., Krüger, Ch., Lahner, G., Kirsch, S., Hauser, G., and Diehl, B., Aufnahme und Speicherung von Schwermetallen durch Regenwürmer in verschiedenen Böden. Umweltwissenschaften und Schadstoff-Forschung2(1) (1990) 10–13.Google Scholar
  79. 78.
    Streit, B., and Schwoerbel, J., Experimentelle Untersuchungen über die Akkumulation von Herbiziden bei benthischen Süsswassertieren. Verh. Ges. Ökol. Göttingen 1976, 371–383.Google Scholar
  80. 79.
    Streit, B., Siré, E.-O., Kohlmaier, G. H., Badeck, F.-W., and Winter, St., Modelling ventilation efficiency of teleost fish gills for pollutants with high affinity to plasma proteins. Ecol. Modelling57 (1991) 237–262.Google Scholar
  81. 80.
    Streit, B., and Stumm, W., Chemical properties of metals and the process of bioaccumulation in terrestrial plants, in: Plants as Biomonitors for Heavy Metal Pollution of the Terrestrial Environment. Ed. B. Markert. Verlag Chemie, Weinheim, New York 1992, in press.Google Scholar
  82. 81.
    Sunda, W. G., Trace metal interactions with marine phytoplankton. Biol. Oceanography6 (1991) 411–442.Google Scholar
  83. 82.
    Taft, R. W., The general nature of the proportionality of polar effects of substituent groups in organic chemistry. J. Am. chem. Soc.75 (1953) 4231–4238.Google Scholar
  84. 83.
    Teal, J. M., Community metabolism in a temperate cold spring. Ecol. Monogr.227 (1957) 283–302.Google Scholar
  85. 84.
    Thomann, R. V., Bioaccumulation model of organic chemical distribution in aquatic food chains. Envir. Sci. Technol.23 (1989) 699–707.Google Scholar
  86. 85.
    Trautmann, A., and Streit, B., Sorption von Lindan (gamma-Hexachlorcyclohexan) anNitzschia actinastroides (LEMM.) v. GOOR (Diatomeae) unter verschiedenen Wachstumsbedingungen. Arch. Hydrobiol., Suppl.55 (1979) 349–372.Google Scholar
  87. 86.
    Tulp, M. Th. M., and Hutzinger, O., Some thoughts on aqueous solubilities and partition coefficients of PCB, and the mathematical correlation between bioaccumulation and physico-chemical properties. Chemosphere10 (1978) 849–860.Google Scholar
  88. 87.
    Van Gestel, C. A. M., and Ma, W.-C., Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil. Ecotoxic. envir. Saf.15 (1988) 289–297.Google Scholar
  89. 88.
    Veith, G. D., and Kosian, P., Estimating bioconcentration potential from octanol/water partition coefficients, in: Physical Behaviour of PCBs in the Great Lakes. Eds D. Mackay et al.. Ann Arbor Science Publishers, Ann Arbor 1983.Google Scholar
  90. 89.
    Wagner, J. G., Biopharmaceutics and Relevant Pharmacokinetics. Drug Intelligence Publications, Hamilton, Illinois, 1971.Google Scholar
  91. 90.
    Wallnöfer, P. R., and Engelhardt, G., Schadstoffe, die aus dem Boden aufgenommen werden, in: Schadwirkungen auf Pflanzen, p. 95–117. Eds B. Hock and E. F. Elstner. BI Wissenschaftsverlag, Mannheim 1988.Google Scholar
  92. 91.
    Wanner, O., Egli, Th., Fleischmann, Th., Lanz, K., Reichert, P., and Schwarzenbach, R. P., Behavior of the insecticides disulfoton and thiometon in the Rhine river: A chemodynamic study. Envir. Sci. Technol.23 (1989) 1232–1242.Google Scholar
  93. 92.
    Weyers, B., Die Bleibelastung der Amsel — Ursache, Dynamik, Anwendung. Thesis, Aachen 1989.Google Scholar
  94. 93.
    Widmark, E. M. P., and Tandberg, J., Über die Bedingungen für die Akkumulation indifferenter Narkotika (Theoretische Berechnungen). Biochem. Z.147 (1924) 358–369.Google Scholar
  95. 94.
    Winter, St., and Streit, B., Organochlorine compounds in a threestep terrestrial food chain. Chemosphere (1992) in press.Google Scholar
  96. 95.
    Woodwell, G. M., Toxic substances and ecological cycles. Sci. Am.216 (1967) 24–31.PubMedGoogle Scholar
  97. 96.
    Woodwell, G. M., Wurster, C. F. Jr, and Isaacson, P. A., DDT residues in an East Coast Estuary: A case of biological concentration of a persistent insecticide. Science156 (1967) 821–824.PubMedGoogle Scholar
  98. 97.
    Wright, Ph. J., and Weber, J. H., Biosorption of inorganic tin and methyltin compounds by estuarine macroalgae. Envir. Sci. Technol.25 (1991) 287–294.Google Scholar
  99. 98.
    Xue, H.-B., Stumm, W., and Sigg, L., The binding of heavy metals to algal surfaces. Wat. Res.22 (1988) 917–926.Google Scholar
  100. 99.
    Ziegler, H., Weg der Schadstoffe in der Pflanze, in: Schadwirkungen auf Pflanzen, p. 35–46. Eds B. Hock and E. F. Elstner. BI Wissenschaftsverlag, Mannheim 1988.Google Scholar
  101. 100.
    Zok, S., Görge, G., Kalsch, W., and Nagel, R., Bioconcentration, metabolism and toxicity of substituted anilines in the zebrafish (Brachydanio rerio). Sci. total Envir.109/110 (1991) 410–421.Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • B. Streit
    • 1
  1. 1.Fachbereich BiologieUniversity of FrankfurtFrankfurt am Main(Federal Republic of Germany)

Personalised recommendations