Advertisement

Zeitschrift für Operations Research

, Volume 29, Issue 7, pp 249–267 | Cite as

Relations between subclasses of greedoids

  • B. Korte
  • L. Lovász
Article

Abstract

In previous papers many different classes and constructions of greedoids have been defined and studied. This paper documents inclusion relations among all subclasses of greedoids which are known so far. It will be shown that all inclusion relations are proper and that all but one subclasses of interval greedoids are distinct.

Keywords

Inclusion Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

In früheren Arbeiten wurden viele verschiedene Klassen und Konstruktionen für Greedoide eingeführt und studiert. In dieser Arbeit werden alle bekannten Inklusionsbeziehungen zwischen Unterklassen von Greedoiden dokumentiert. Es wird gezeigt, daß alle Inklusionsbeziehungen echt und alle Unterklassen mit einer Ausnahme tatsächlich verschieden sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björner, A. [1985]:On matroids, groups and exchange languages. In: L. Lovász and A. Recski (eds): Matroid Theory and its Applications. Conference Proceedings, Szeged, September 1982. Colloquia Mathematica Societatis Jonós Bolyai. Vol. 40, p. 25–60. Amsterdam, Oxford, New York: North Holland 1985.Google Scholar
  2. Crapo, H. [1965]:Single-element extensions of matroids. J. Research Nat. Bureau of Standards 69B (1965), p. 55–65.Google Scholar
  3. Dunstan, F.D.J., Ingleton, A.W. and Welsh, D.J.A. [1912]Supermatroids in: D.A.J. Welsh and D.R. Woodall (eds.) Combinatorics. Institute of Math., and Its Appl. Ser. Academic Press, London, New York 1972, p. 72–123.Google Scholar
  4. Faigle, U. [1980]:Geometries on partially ordered sets. J. Comb. Theory, Series B, 28 (1980), p. 26–51.Google Scholar
  5. Korte, B. and Lovász, L. [1981]:Mathematical structures underlying greedy algorithms: F. Gécseg (ed.): Fundamentals of Computation Theory. Lecture Notes in Computer Science 117. Berlin, Heidelberg, New York: Springer 1981, p. 205–209.Google Scholar
  6. Korte, B. and Lovász, L. [1983]:Structural properties of greedoids. Combinatorica 3, 3–4, (1983), p. 359–374.Google Scholar
  7. Korte, B. and Lovász, L. [1984a]:Greedoids, a structural framework for the greedy algorithm. in: W.R. Pulleyblank (ed.): Progress in Combinatorial Optimization. Proceedings of the Silver Jubilee Conference on Combinatorics, Waterloo, June 1982. Academic Press, London, New York, San Francisco 1982, p. 221–243.Google Scholar
  8. Korte, B. and Lovász, L. [1984b]:Shelling structures, convexity and a happy end. in: B. Bollobás (ed.): Graph Theory and Combinatorics. Proceedings of the Cambridge Combinatorial Conference in Honour of Paul Erdös. Academic Press, London 1984, p. 219–232.Google Scholar
  9. Korte, B. andLovász, L. [1985a]:Polymatroid greedoids. Journal of Comb. Theory B, 38 (1985), p. 41–72.CrossRefGoogle Scholar
  10. Korte, B. and Lovász, L. [1985b]:Posets, matroids and greedoids. In: L. Lovász and A. Recski (eds): Matroid Theory and its Applications. Conference Proceedings, Szeged, September 1982. Colloqua Mathematica Sociotatis Janós Bolyai. Vol. 40, p. 239–265. Amsterdam, Oxford, New York: North Holland 1985.Google Scholar

Copyright information

© Physica-Verlag 1985

Authors and Affiliations

  • B. Korte
    • 1
  • L. Lovász
    • 2
  1. 1.Institut für Ökonometrie and Operations Research, Abteilung Operations ResearchRheinische Friedrich Wilhelms Universität BonnBonn 1W. Germany
  2. 2.Institute of MathematicsEötvos Lorand UniversityBudapestHungary

Personalised recommendations