Journal of thermal analysis

, Volume 37, Issue 8, pp 1633–1656

Geopolymers

Inorganic polymeric new materials
  • J. Davidovits
Materials, Inorganic Chemistry

Abstract

Spectacular technological progress has been made in the last few years through the development of new materials such as ‘geopolymers’, and new techniques, such as ’sol-gel’. New state-of-the-art materials designed with the help of geopolymerization reactions are opening up new applications and procedures and transforming ideas that have been taken for granted in inorganic chemistry. High temperature techniques are no longer necessary to obtain materials which are ceramic-like in their structures and properties. These materials can polycondense just like organic polymers, at temperatures lower than 100‡. Geopolymerization involves the chemical reaction of alumino-silicate oxides (Al3+ in IV-fold coordination) with alkali polysilicates yielding polymeric Si-O-Al bonds; the amorphous to semi-crystalline three dimensional silico-aluminate structures are of the Poly(sialate) type (-SiO-Al-O-), the Poly(sialate-siloxo) type (-Si-O-Al-O-Si-O-), the Poly(sialate-disiloxo) type (-Si-O-Al-O-Si-O-Si-O-).

This new generation of materials, whether used pure, with fillers or reinforced, is already finding applications in all fields of industry. Some examples:
  • pure: for storing toxic chemical or radioactive waste, etc.

  • filled: for the manufacture of special concretes, molds for molding thermoplastics, etc.

  • reinforced: for the manufacture of molds, tooling, in aluminum alloy foundries and metallurgy, etc.

These applications are to be found in the automobile and aerospace industries, non-ferrous foundries and metallurgy, civil engineering, plastics industries, etc.

Zusammenfassung

Durch die Entwicklung neuer Materialien wie ‘Geopolymere’ und neuer Prozesse wie ‘Sol-Gel’ wurden in den letzten Jahren spektakulÄre Fortschritte auf technologischem Gebiet erzielt. Neue, mittels Geopolymerisationsreaktionen erzeugte Stoffe eröffnen neuartige Anwendungen und verÄndern Ansichten, die in der anorganischen Chemie seit langem als gesichert galten. Hochtemperaturtechniken sind nicht mehr notwendig, um Materialien herzustellen, die in ihren Strukturen und Eigenschaften der Keramik gleichen. Solche Substanzen können, Ähnlich wie organische Polymere, bei Temperaturen unterhalb 100‡C polykondensieren. Geopolymerisation beinhaltet die chemische Reaktion Alumino-silicatischer Oxide (Al3+ in Viererkoordination) mit Alkali-Polysilicaten zu polymeren Si-O-Al Bindungen; die amorphen bis semi-kristallinen dreidimensionalen Silicoaluminatstrukturen sind vom Poly(sialat) Typ (-Si-O-Al-O-), vom Poly(sialat-siloxo) Typ (-Si-O-Al-O-Si-O-), vom Poly(sialat-disiloxo) Typ (-Si-O-Al-O-Si-O-Si-O-).

Diese neue Generation von Materialien, ob in reinem Zustand, mit Füllstoffen oder in verstÄrkter Form, finden gemÄss zitierten Beispielen bereits Anwendungen in allen industriellen Bereichen. Dazu gehören insbesondere die Automobil- und Luftfahrts-Industrie, Giessereien und Metallurgie von Nichteisenmetallen, Ingenieurwesen, Kunststoffindustrie, etc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Davidovits, Darstellung und Strukturuntersuchung von Diol-oligo-urethanen einheitlicher Molekügrösse, Dr. rer. nat. Thesis, University of Mainz, Germany, 1960.Google Scholar
  2. 2.
    J. Davidovits, Transfer and Exploitation of Scientific and Technical Information, EUR 7716, Commission of the European Communities, Luxembourg 1982, p. 316.Google Scholar
  3. 3.
    R. M. Barrer, Trans. Brit. Ceramic. Soc., 56 (1957) 155.Google Scholar
  4. 4.
    D. W. Breck, Zeolite Molecular Sieves, J. Wiley & Son ed., New York 1974.Google Scholar
  5. 5.
    J. Davidovits, SPE PACTEC '79, Society of Plastic Engineers, Brookfield Center, USA 1979, p. 151.Google Scholar
  6. 6.
    J. Davidovits, Concrete International: Design & Construction, 9 Nℴ 12 (1987) 23.Google Scholar
  7. 7.
    R. Weiss, Chemische Rundschau, 39 (Nov. 21) (1986) 1.Google Scholar
  8. 8.
    P. Moch, P. Thebaut, L. Girardot and M. Davidovics, Geopolymer '88, paper nℴ 10, Université de Technology Compiègne, France 1988.Google Scholar
  9. 9.
    J. Orlinski, Geopolymer '88, paper nℴ 9, Université de Technologie Compiègne, France 1988.Google Scholar
  10. 10.
    M. Guigon et J. L. Meyer, Geopolymer '88, paper nℴ 16, Université de Technologie Compiègne, France 1988.Google Scholar
  11. 11.
    J. Davidovits, Geopolymer '88, paper nℴ 2, Université de Technologie Compiègne, France 1988; see also Proceedings of Geopolymer '88, Vol. 1, p. 25; Vol. 2, p. 149.Google Scholar
  12. 12.
    J. Davidovits, Geopolymer '88, Vol. 2, p. 149.Google Scholar
  13. 13.
    J. Davidovits, US Patent 3.950.470, French Patent 2.204.999, French Patent 2.346.121; UK Patent 1.518.605; J. Davidovits and J. J. Legrand, US Patent 4.028.454, French Patent 2.324.427.Google Scholar
  14. 14.
    J. Davidovits, J. Lavau et A. Emberger, French Patent 2.341.522.Google Scholar
  15. 15.
    R. M. Barrer and J. W. Baynham, J. Chemical Soc., (1956) 2882.Google Scholar
  16. 16.
    J. Davidovits, European Patent 026.687, European Patent 066371, US Patent 4.349.386, USA Patent 4.472.199.Google Scholar
  17. 17.
    E. Lippmaa, M. Megi, A. Samoson, G. Engelhardt and A. R. Grimmer, J. Phys. Chem. Soc., 102 (1980) 4889.Google Scholar
  18. 18.
    D. Müller, W. Gressner, H. J. Behrens and G. Scheler, Chem. Phys. Lett., 79 (1981) 59.CrossRefGoogle Scholar
  19. 19.
    B. H. W. S. De Jong, C. M. Schramm and V. E. Parziale, Geochemica et Cosmochimica Acta, 47 (1983) 1223.CrossRefGoogle Scholar
  20. 20.
    J. Klinowski, Progress in NMR Spectroscopy, 16 (1984) 237.CrossRefGoogle Scholar
  21. 21.
    W. Loewenstein, Am. Mineral., 39 (1954) 92.Google Scholar
  22. 22.
    Z. Gabelica, J. Davidovits and H. J. Jakobsen, Geopolymer '88, Vol. 1, paper nr 8, p. 6.Google Scholar
  23. 23.
    M. Davidovics, J. Orlinski and J. Davidovits, Tooling for Composites Conference, Anaheim, USA, June 1990, Society of Manufacturing Engineers SME.Google Scholar
  24. 24.
    C. Boutterin and J. Davidovits, Proceedings 22nd Symposium on Archeometry, University of Bradford, U.K. 1982, p. 213. See also French Patent 2.490.626 (1982).Google Scholar
  25. 25.
    D. C. Comrie, Report CANMET Canada, DSS Contract Nℴ 234406-9195/01SQ, Preliminary examination of the potential of geopolymers for use in mine tailings management, D. Comrie Consulting Mississauga, Ontario, 1988.Google Scholar
  26. 26.
    J. Davidovits, European Patent 338.060 (PCT WO 89/02766), US Patent Application 104.190, 1987.Google Scholar
  27. 27.
    J. Davidovits and D. Comrie, Preprints Division Chemistry, Am. Chem. Soc., Toronto, (1988) 237.Google Scholar
  28. 28.
    J. Davidovits, SPE PACTEC '83, Society of Plastic Engineers, Brookfield Center, USA 1983, p. 222.Google Scholar
  29. 29.
    Chemical & Engineering News, Washington D. C. March 5, 1990, p. 13.Google Scholar
  30. 30.
    Report, Projet Matériaux 1982, P. 0548, Ministère de la Recherche, Paris 1985.Google Scholar
  31. 31.
    N. Davidovits, M. Davidovics and J. Davidovits, US Patent 4.888.311, European Patent 288.502 (PCT WO 88/02741).Google Scholar
  32. 32.
    J. Davidovits and M. Davidovics, ICCM & ECCM, Elsevier Applied Science, London 1987 Vol. 1, p. 462.Google Scholar
  33. 33.
    NICALON is registered trademark of Nippon Carbon & Co. JapanGoogle Scholar
  34. 34.
    SAFIL is a registered trademark of I.C.I. Ltd, UK.Google Scholar
  35. 35.
    J. Davidovits and M. Davidovics, Ceramic Eng. Sci. Proc., 9 (1988) 835.Google Scholar

Copyright information

© Wiley Heyden Ltd., Chichester and Akadémiai Kiadó, Budapest 1991

Authors and Affiliations

  • J. Davidovits
    • 1
  1. 1.Cordi-Geopolymere SAGeopolymer InstituteSaint QuentinFrance

Personalised recommendations