Basic Research in Cardiology

, Volume 76, Issue 4, pp 354–358 | Cite as

Can a single vasodilator be responsible for both coronary autoregulation and metabolic vasodilation?

  • J. D. Laird
  • P. N. Breuls
  • P. van der Meer
  • J. A. E. Spaan
Original Contributions

Summary

To test the hypothesis that both coronary autoregulation and metabolic vasodilation can be mediated by the same substance, we have analysed measured autoregulation curves with the aid of a simple mass balance model. In an open-chest dog preparation, increasing the heart rate by pacing results in a nearly parallel shift of the autoregulation curve to a higher flow (Q) level. We assume a unique relationship between vascular conductance and interstitial concentration of a vasodilating substance [A]. Applying a compartmental mass balance, it is possible to predict with a minimum of assumptions the increase of flow between two points with increased production but having the same vasodilator concentration. The simple result of this analysis is: ΔQ=Δproduction/[A]. If the vasodilator concentration varies by more than a factor 2 between low and high conductance points, the autoregulation curve cannot shift in a parallel fashion as a result of an increased production rate, but rather will become less and less steep. We conclude that a single vasodilator cannot be responsible for both autoregulation and metabolic vasodilation unless complex assumptions are made, for which there is as yet no experimental support.

Key words

coronary fldw autoregulation metabolic hypothesis models adenosine hypothesis flow regulation pressure-flow relationships 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berne, R. M., R. Rubio: Coronary Circulation. Chapter 25 in Handbook of Physiology, Section 2: The cardiovascular System. Edited by Berne, R. M., N. Sperelakis, S. R. Geiger, American Physiological Society, Bethesda, Md., USA (1979).Google Scholar
  2. 2.
    Kroll, K., J. J. Schipperheijn, F. F. A. Hendriks, J. D. Laird: Role of adenosine in postocclusion coronary vasodilation. Amer. J. Physiol.238, H214-H219 (1978).Google Scholar
  3. 3.
    Olsson, R. A., J. A. Snow, M. K. Gentry: Adenosine metabolism in canine myocardial reactive hyperemia. Circulat. Res.42, 358–362 (1978).PubMedGoogle Scholar
  4. 4.
    Olsson, R. A.: Evidence for an adenosine receptor on the surface of the dog coronary myocytes. Circulat. Res.39, 93–98 (1976).PubMedGoogle Scholar
  5. 5.
    Olsson, R. A., J. A. Snow, M. K. Gentry, G. P. Frick: Adenosine uptake by canine heart. Circulat. Res.31, 767–778 (1972).PubMedGoogle Scholar
  6. 6.
    Rubio, R., V. T. Wiedmeier, R. M. Berne: Relationship between coronary flow and adenosine production and release. J. Molec. Cell. Cardiology6, 561–566 (1974).CrossRefGoogle Scholar
  7. 7.
    Schrader, J., F. J. Haddy, E. Gerlach: Release of adenosine, inosine, and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia. Pflügers Arch.369, 1–6 (1977).CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1981

Authors and Affiliations

  • J. D. Laird
    • 1
  • P. N. Breuls
    • 1
  • P. van der Meer
    • 1
  • J. A. E. Spaan
    • 1
  1. 1.Department of Physiology and Physiological PhysicsLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations