, Volume 1, Issue 2, pp 112–122 | Cite as

The use of the „studentized range” in connection with an analysis of variance

  • M. Keuls


A numerical example is given of the analysis of variance applied on yields per cabbage.

After having concluded from a F-test, that the varieties show significant differences, a discussion is given of a new method to decidewhich varieties are different.

The t-test though in frequent use, gives wrong conclusions. The method indicated in this article diverges from those discussed byNewman andTukey and is I suppose the more plausible.


Het gebruik van de „studentized range” in verband met de variatieanalyse

Een rekenvoorbeeld wordt gegeven van de variatieanalyse toegepast op spitskoolopbrengstcijfers.

Na op grond van een F-test te hebben geconcludeerd dat de rassen duidelijke verschillen tonen, wordt een nieuwe methode besproken om uit te makenwelke rassen verschillen. Hoewel de t-test hiertoe geregeld gebruikt wordt geeft deze verkeerde uitkomsten. De aangegeven methode wijkt af van die welke doorNewman enTukey worden besproken en lijkt mij de meest voor de hand liggende van de drie.


Productive Capacity Random Test Florin Variety Means Systematic Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

List of references

  1. 1.
    Cox, G. andCochran W. G., Experimental designs. John Wiley, New York, 1950.Google Scholar
  2. 2.
    Florin, H., Over het gebruik van de range tot schatten van de standaarddeviatie. Meded. v. d. Kon. Vlaamse Acad. van Wetensch.12 (1951) nr 6.Google Scholar
  3. 3.
    Nair, K. R., The studentized form of the extreme mean square test in the analysis of variance. Biometrika35 (1948): 16.CrossRefPubMedGoogle Scholar
  4. 4.
    Newman, D., The distribution of range in samples from a normal population expressed in terms of an independent estimate of standard deviation. Biometrika31 (1939): 20.CrossRefGoogle Scholar
  5. 5.
    Patnaik, B. P., The use of mean range as an estimator of variance in statistical tests. Biometrika37 (1950): 78.CrossRefPubMedGoogle Scholar
  6. 6.
    Pearson, E. S. andHartley, H. O., Tables of the probability integral of the studentized range. Biometrika33 (1943): 89.Google Scholar
  7. 7.
    Snedecor, G. W., Statistical Methods (4th ed.), Iowa State College Press. 1946.Google Scholar
  8. 8.
    Tukey, J. W., Comparing individual means in the analysis of variance. Biometrics5 (1949): 99.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publisher 1952

Authors and Affiliations

  • M. Keuls
    • 1
  1. 1.Institute of Horticultural Plant BreedingWageningen

Personalised recommendations