Basic Research in Cardiology

, Volume 84, Issue 2, pp 111–124 | Cite as

The measurement of blood density and its meaning

  • T. Kenner


Density is defined as mass per unit volume. The classical technique to measure the density of fluids consists of a determination of mass and volume. Blood density is proportional to hematocrit or, more exactly, to the total protein concentration of blood; only to a minor extent is blood density influenced by other plasma solutes.

Since the introduction of the mechanical oscillator technique for the continuous recording of fluid density a sizeable amount of experience has accumulated. This review summarizes recent work performed with this technique. It appears that the scientific interest in a variable like blood density depends on the availability of a suitable and simple method. Until the oscillator technique was available the measurement of density was too complicated or too inaccurate for routine laboratory use. A further new technique permits us to determine fluid densities by measuring sound velocity transmission.

The density dilution method can be used for the determination of distribution volumes, of flow through organs, and of the cardiac output. The influence of temperature and of certain artifacts like acceleration forces in the density measuring device have to be considered and may be used for additional diagnostic purposes like determination of erythrocyte sedimentation velocity. The new technique opens a reasonable simple way to study fluid shift between interstitial space and capillaries. The arterio-venous density gradient in an organ depends on the lymph production. The injection of a hypertonic solution leads to an osmotic fluid shift from the extravascular space towards the blood. This fluid shift can be recognized by a reduction of the blood density. A simple model for the description of this reaction is presented.

Key words

blood density capillary filtration osmotic pressure indicator dilution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernhardt, J, Pauly HH (1980) Pycnometric versus densimetric measurements of highly viscous protein solutions. J Phys Chem 84:158–162CrossRefGoogle Scholar
  2. 2.
    Effros RM (1974) Osmotic extraction of hypotonic fluid from the lungs. J Clin Invest 54:935–947PubMedGoogle Scholar
  3. 3.
    Gallasch E, Moser M, Kenner T (1986) Characterization of arteriovenous transfer functions in the coronary circulation. Proc Symp CVSD Zuoz 5:1–3Google Scholar
  4. 4.
    Gamas L, Lee JS (1986) Density indicator method to measure pulmonary blood flows. J Appl Physiol 60:327–334CrossRefPubMedGoogle Scholar
  5. 5.
    Haas G (1986) Zur Biologie der Alterung von Blutkonserven—ein neuer Anwendungsbereich der Biegeschwingermethode. Dissertation, Univ GrazGoogle Scholar
  6. 6.
    Heimel H, Leopold H, Stabinger H (1983) Verfahren und Vorrichtung zur Untersuchung von Flüssigkeitseigenschaften. AT-Patent 380339Google Scholar
  7. 7.
    Hinghofer-Szalkay H (1980) Untersuchungen zum Einfluß von Körperlage und Schwerkraft auf die Eigenschaften von Blut und Plasma. Klin Wschr 58:1147–1154CrossRefPubMedGoogle Scholar
  8. 8.
    Hinghofer-Szalkay H (1985) Volume and density changes of biological fluids with temperature. J Appl Physiol 59:1686–1689PubMedGoogle Scholar
  9. 9.
    Hinghofer-Szalkay H (1986) Method of high-precision microsample blood and plasma mass densitometry. J Appl Physiol 60:1082–1088PubMedGoogle Scholar
  10. 10.
    Hinghofer-Szalkay H (1986) Continuous blood densitometry: fluid shifts after graded hemorrhage in animals. Amer J Physiol 250:H342-H350PubMedGoogle Scholar
  11. 11.
    Hinghofer-Szalkay H, Greenleaf JE (1987) Continuous monitoring of blood volume changes in humans. J Appl Physiol 63:1003–1007PubMedGoogle Scholar
  12. 12.
    Hinghofer-Szalkay H, Harrison MH, Greenleaf JE (1987) Early fluid and protein shifts in men during water immersion. Eur J Appl Physiol 56:673–678Google Scholar
  13. 13.
    Hinghofer-Szalkay H, Leopold H, Kenner T, Holzer H (1980) Über den thermischen Ausdehnungskoeffizienten des Blutes und seiner Komponenten. Biomed Tech 25:151–157Google Scholar
  14. 14.
    Hinghofer-Szalkay H, Kravik SE, Greenleaf JE (1988) Effect of lower body positive pressure on postural fluid shifts in men. Eur J Appl Physiol 57:49–54CrossRefGoogle Scholar
  15. 15.
    Hinghofer-Szalkay H, Moser M (1986) Fluid and protein shifts aft postural changes in human. Amer J Physiol 250:H68-H75PubMedGoogle Scholar
  16. 16.
    Hinghofer-Szalkay H, Teubl I, Dohr G, List W (1984) Volumen- und Dichteverteilung von Mikroaggregaten in konserviertem Blut. Melsunger Med Mitt XII Bibliomed:167–175Google Scholar
  17. 17.
    Holzer H, Leopold H, Hinghofer-Szalkay H, Stübchen-Kirchner H, Maurer E (1978) Gesamteiweißbestimmung im Serum durch Dichtemessung nach der Biegeschwingermethode. J Clin Chem Clin Biochem 16:391–395PubMedGoogle Scholar
  18. 18.
    Holzer H, Pogglitsch H, Hinghofer-Szalkay H, Kenner T, Leopold H, Passath A (1979) Die kontinuierliche Messung der Blutdichte während der Hämodialyse. Wien Klin Wschr 91:762–765PubMedGoogle Scholar
  19. 19.
    Johnston RS, Dietlein LF (1977) Biomedical results from Splacelab. NASA, Washington DCGoogle Scholar
  20. 20.
    Kenner T (1982) Physiological measurement in circulation research. Med Progr Technol 9:67–74Google Scholar
  21. 21.
    Kenner T (1982) Continuous recording of the blood density—a new method for the study of cardiovascular dynamics. IEEE Frontiers of Engineering in Health Care:258–263Google Scholar
  22. 22.
    Kenner T (1983) Small arteries and the interaction with the cardiovascular system. In: Rodkiewicz CM (ed) Arteries and arterial blood flow. Springer-Verlag, Wien, New York, pp 217–326.Google Scholar
  23. 23.
    Kenner T, Hinghofer-Szalkay H (1984) Measurement of blood and plasma density with the mechanical oscillator technique. Proc 2nd Europ Symp Life Sciences in Space:179–182Google Scholar
  24. 24.
    Kenner T, Hinghofer-Szalkay H, Leopold H (1977) The continuous high precision measurement of the density of flowing blood. Pflügers Arch 370:25–29CrossRefGoogle Scholar
  25. 25.
    Kenner T, Hinghofer-Szalkay H, Leopold H (1977) Experimental observation and interpretation of capillary fluid shifts using a new method. Cardiovascular and Pulmonary Dynamics 71:283–290Google Scholar
  26. 26.
    Kenner T, Hinghofer-Szalkay H, Leopold H, Pogglitsch H (1977) Verhalten der Blutdichte in Relation zum Blutdruck im Tierversuch und bei Hämodialyse von Patienten. Z Kardiol 66:399–401PubMedGoogle Scholar
  27. 27.
    Kenner T, Moser M, Hinghofer-Szalkay H (1980) The application of the density dilution method for the observation of fast osmotic fluid shifts in the lung circulation. Biomed Technik 25:139–143Google Scholar
  28. 28.
    Kenner T, Moser M, Hinghofer-Szalkay H (1980) Determination of cardiac output and of transcapillary fluid exchange by continuous recording of blood density. Basic Res Cardiol 75:501–509PubMedGoogle Scholar
  29. 29.
    Kenner T, Moser M, Hinghofer-Szalkay H, Mohl W (1984) Indirect determination of fluid filtration and reabsorption in the microcirculation of the myocardium. Biomed Technik 29:108–116Google Scholar
  30. 30.
    Kenner T, Moser M, Mohl W (1984) Wave reflections and pressure flow relations in the coronary circulation. In: Mohl W, Wolner E, Glogar D (eds) The Coronary Sinus. Steinkopff, Darmstadt, pp 60–72Google Scholar
  31. 31.
    Kenner T, Moser M, Mohl W (1985) Arteriovenous difference of the blood density in the coronary circulation. Transact ASME, J Biomech Eng 107:34–40Google Scholar
  32. 32.
    Kenner T, Moser M, Mohl W, Tiedt N (1986) Inflow, outflow and pressures in the coronary circulation. In: Mohl W, Faxon D, Wolner E (eds) CSI—a new approach to interventional cardiology. Steinkopff, Darmstadt, pp 15–26Google Scholar
  33. 33.
    Kratky O, Leopold H, Stabinger H (1969) Dichtemessung an Flüssigkeiten und Gasen auf 10−6 g/cm3 bei 0,6 cm3 Probenvolumen. Z Angew Physik 27:273–277Google Scholar
  34. 34.
    Leach SI (1973) Physical principles and techniques of protein chemistry. Part C, Chapter 17. Academic Press, NY, pp 1–75Google Scholar
  35. 35.
    Lee JS, Kenner T (1982) Microvascular dynamics. In: Kenner T, Busse R, Hinghofer-Szalkay H (eds) Cardiovascular system dynamics, models and measurements. Plenum Press, NY, London, pp 413–430Google Scholar
  36. 36.
    Lee JS, Lee LP, Villafance M, Moser M, Kenner T (1984) Artificial ventilation causes hematocrit fluctuations in the arterial blood. Fed. Proc 43:3725Google Scholar
  37. 37.
    Lee JS, Lee LP (1986) Ventilatory changes of pulmonary capillary blood volume assessed by arterial density. J Appl Physiol 61:1724–1731PubMedGoogle Scholar
  38. 38.
    Lee JS, Lee LP, Evans MV, Gamas L (1985) A density method to quantify pulmonary microvascular hematocrit. Microvasc Res 30:222–234CrossRefPubMedGoogle Scholar
  39. 39.
    Leopold H (1986) Der Einfluß der Viskosität bei der Dichtemessung nach der Biegeschwingermethode. Österr Ges Biomed Tech Mitteilungsblatt 1:B1-B7Google Scholar
  40. 40.
    Leopold H, Hinghofer-Szalkay H, Kenner T, Holzer H (1978) Schnelle gravitationsunabhängige Bestimmung der Sedimentationsrate des Blutes. Biomed Tech 23:99–103Google Scholar
  41. 41.
    Leopold H, Jellinek R, Tilz GP (1977) The application of the mechanical oscillator technique for the determination of the density of physiological fluids. Biomed Tech 22:231–235Google Scholar
  42. 42.
    Lloyd Jones E (1987) On the variations in the specific gravity of the blood in health. J Physiol (London) 8:1–14Google Scholar
  43. 43.
    Mohl W, Punzengruber T, Moser M, Kenner T, Heimisch W, Haendchen R, Meerbaum S, Maurer G, Corday E (1985) Effects of pressure controlled intermittent coronary sinus occlusion on regional ischemic myocardial function. J Amer Coll Cardiol 5:939–947Google Scholar
  44. 44.
    Moser M (1980) Die Anwendbarkeit von Blut- und Plasmadichtemessungen mittels der Biegeschwingermethode auf Fragen des Flüssigkeitsaustausches in der Mikrozirkulation. Dissertation, Univ GrazGoogle Scholar
  45. 45.
    Moser M, Hinghofer-Szalkay H, Kenner T, Holzer H (1980) Die Bestimmung des kolloidosmotischen Durcks aus der Plasmadichte mittels der Biegeschwingermethode. J Clin Chem Clin Biochem 18:233–236PubMedGoogle Scholar
  46. 46.
    Moser M, Kenner T (1988) Blood flow and blood volume determinations in aorta and in coronary circulation by density dilution. Basic Res Cardiol 83:577–589CrossRefPubMedGoogle Scholar
  47. 47.
    Moser M, Mohl W, Gallasch E, Kenner T (1984) Optimization of pressure controlled intermittent coronary sinus occlusion intervals by density measurement. In: Mohl W, Wolner E, Glogar D (eds) The Coronary Sinus. Steinkopff, Darmstadt, pp 529–536Google Scholar
  48. 48.
    Moser M, Mohl W, Kenner T (1984) The arteriovenous density gradient as an index for myocardial function. In: Mohl W, Wolner E, Glogar D (eds) The Coronary Sinus. Steinkopff, Darmstadt, pp 497–507Google Scholar
  49. 49.
    Moser M, Schneditz D, Gallasch E, Kenner T (1988) Investigation of pulmonary and coronary microvascular properties by blood density measurements. Proc Symp Frontiers Cardiopulm mech, p 57Google Scholar
  50. 50.
    Moser M, Vauti F, Pinter H, Kenner T (1985) Circadian variation of volume and concentration of orthostatically shifted-fluid. The Physiologist 28:S-169Google Scholar
  51. 51.
    Pogglitsch H, Waller J, Holzer H, Kenner T, Leopold H, Hinghofer-Szalkay H Hinghofer-Szalkay H (1977) Relationship between hemodynamic and blood volume regulation during hemodialysis and hemofiltration. Opuscula Med 18:56–65Google Scholar
  52. 52.
    Roy ChS (1984) Note on a method of measuring the specific gravity of the blood for clinical use. Proc Physiol Soc (London), pp 9–10Google Scholar
  53. 53.
    Schmid M, Schindler R, Weigand K (1986) Is albumin synthesis regulated by the colloid osmotic pressure? Effect of albumin and dextran on albumin and total protein synthesis in isolated rat hepatocytes. Klin Wschr 64:23–28CrossRefPubMedGoogle Scholar
  54. 54.
    Schneditz D, Kainz T, Moser M, Kenner T (1987) Influence of tonicity on the viscoelastic properties of blood during isovolemic dilution. Basic Res Cardiol 82:388–395PubMedGoogle Scholar
  55. 55.
    Schneditz D, Kenner T, Gallasch E, Rainer F (1987) Quick measurement of hematocrit and erythrocyte sedimentation rate by means of a density tracking method. Blut 55:153–163CrossRefPubMedGoogle Scholar
  56. 56.
    Tilz GP, Leopold H (1972) Einführung eines neuen digitalen Flüssigkeitsdichtemeßgerätes in die klinische Diagnostik. Wien Med Wschr 84:697–699Google Scholar
  57. 57.
    Vauti V, Moser M, Pinter H, Kenner T (1985) Daycourse of blood and plasma density in relation to other hematological parameters. The Physiologist 28:S-171Google Scholar
  58. 58.
    Voornveld van HJA (1902) Das Blut im Hochgebirge. Pflügers Arch 92:1–60CrossRefGoogle Scholar
  59. 59.
    Wetterer E, Kenner T (1968) Dynamik des Arterienpulses. Springer, Berlin Heidelberg NYGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1989

Authors and Affiliations

  • T. Kenner
    • 1
  1. 1.Physiologisches InstitutUniversität GrazGrazÖsterreich

Personalised recommendations