Advertisement

Surveys in Geophysics

, Volume 17, Issue 1, pp 67–100 | Cite as

Physical mechanisms of man-made influences on the magnetosphere

  • M. Parrot
  • Y. Zaslavski
Article

Abstract

Since the discovery of the Luxembourg effect in the 1930s, it is clear that man-made activities can perturb the ionosphere and the magnetosphere. The anthropogenic effects are mainly due to different kinds of waves coming from the Earth's surface. Acoustic-gravity waves are generated by large explosions, spacecraft launches, or flight of supersonic planes. Electromagnetic waves are active in different frequency ranges. Power line harmonic radiation which is radiated in the ELF range by electrical power systems can be observed over industrial areas. At VLF and HF, the ground-based transmitters used for communications or radio-navigation heat the ionosphere and change the natural parameters. A large variety of phenomena is observed: wave-particle interaction, precipitation of radiation belt electrons, parametric coupling of EM whistler waves, triggered emissions, frequency shift, and whistler spectrum broadening. This paper will review the different physical mechanisms which are relevant to such perturbations. The possibility of direct chemical pollution in the ionosphere due to gas releases is also discussed.

Key words

anthropogenic effect ionosphere man-made waves greenhouse gas 

Nomenclature

α

pitch angle

B

magnetic field

B0

Earth's magnetic field

Bitw

wave magnetic field

c

light velocity

cs

sound velocity

e

electron charge

E

electric field

ε0

electric permittivity of free space

F

force

g

gravitational acceleration

J

current

K

Boltzmann's constant

k

wave number

k

wave vector

k

absorption coefficient

L, lγ

loss rate

LM

McIlwain's parameter

m

electron mass

μ0

permeability of free space

N

density

n

refractive index

v

collision frequency

p, P

pressure

Q, q

loss rate

ϱ

density

σ

conductivity

σ

conductivity tensor

σH

Hall conductivity

σP

Pedersen conductivity

T

temperature

t

time

u

velocity

V, v

particle velocity

Vg

group velocity

ω

angular wave frequency

ωa

acoustic cutoff frequency (Equation (3))

ωb

Brünt-Väisälä frequency (Equation (3))

ωH

wave cyclotron frequency (e B0/m)

ωp

plasma frequency (N e e2/m0)1/2

ωt

wave trapping frequency (Equation (24))

ωw

wave cyclotron frequency (eBw/m)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al'perovich, L. S., Ponomarev, E. A. and Fedorovich, G. V.: 1985, “Geophysical Phenomena Modeled by an Explosion: A Review’,Izv. Ac. of Sci. USSR (Physics of the Solid Earth) 22, 816–825.Google Scholar
  2. Anastasi, C. and Simpson, V. J.: 1993, ‘Future Methane Emissions from Animals,’J. Geophys. Res. 98, 7181–7186.Google Scholar
  3. Arendt, P. R.: 1972, ‘Ionospheric Shock Front from Apollo-15 Launching,’Nature 236, 8–10.CrossRefGoogle Scholar
  4. Armstrong, W. C.: 1987, ‘Lightning Triggered from the Earth's Magnetosphere as the Source of Synchronised Whistlers’,Nature 327, 405–408.CrossRefGoogle Scholar
  5. Bell, T. F., Luette, J. P. and Inan, U. S.: 1982, ‘ISEE 1 Observations of VLF Line Radiation in the Earth's Magnetosphere’,J. Geophys. Res. 87, 3530–3536.Google Scholar
  6. Bell, T. F., James, H. G., Inan, U. S. and Katsufrakis, J. P.: 1983, ‘The Apparent Spectral Broadening of VLF Transmitter Signals during Transionospheric Propagation,’J. Geophys. Res. 88, 4813–4840.Google Scholar
  7. Bell, T. F.: 1985, ‘High-Amplitude VLF Transmitter Signals and Associated Sidebands Observed near the Magnetic Equatorial Plane on the ISEE 1 Satellite’,J. Geophys. Res. 90, 2792–2806.Google Scholar
  8. Bell, T. F. and Ngo, H. D.: 1988, ‘Electrostatic Waves Stimulated by Coherent VLF Signals Propagating in and near the Inner Radiation Belt’,J. Geophys. Res. 93, 2599–2618.Google Scholar
  9. Bell, T. F. and Ngo, H. D.: 1990, ‘Electrostatic Lower Hybrid Waves Excited by Electromagnetic Whistler Mode Waves Scattering from Planar Magnetic-Field-Aligned Plasma Density Irregularities’,J. Geophys. Res. 95, 149–172.Google Scholar
  10. Bell, T. F., Helliwell, R. A. and Hudson, M. K.: 1991, ‘Lower Hybrid Waves Excited through Linear-Mode Coupling and the Heating of Ions in the Auroral and Subauroral Magnetosphere’,J. Geophys. Res. 96, 11,379–11,388.Google Scholar
  11. Bell, T. F., Helliwell, R. A., Inan, U. S. and Lauben, D. S.: 1993, ‘The Heating of Suprathermal Ions above Thunderstorm Cells’,Geophys. Res. Lett. 20, 1991–1994.Google Scholar
  12. Bernhardt, P. A.: 1987, ‘A Critical Comparison of Ionospheric Depletion Chemicals’,J. Geophys. Res. 92, 4617–4628.Google Scholar
  13. Bernhardt, P. A. and Duncan, L. M.: 1987, ‘The Theory of Ionospheric Focused Heating,’J. Atmos. Terr. Phys. 49, 1107–1117.CrossRefGoogle Scholar
  14. Bernhardt, P. A., Rodriguez, P., Siefring, C. L. and Lin, C. S.: 1991, ‘Field-Aligned Dynamics of Chemically Induced Perturbations to the Ionosphere’,J. Geophys. Res. 96, 13,887–13,900.Google Scholar
  15. Blanc, E.: 1984, ‘Interaction of an Acoustic Wave of Artificial Origin with the Ionosphere as Observed by Vertical HF Sounding at Total Reflection Levels’,Radio Sci. 9, 653–664.Google Scholar
  16. Blanc, E.: 1985, ‘Observations in the Upper Atmosphere of Infrasonic Waves from Natural or Artificial Sources: A Summary’,Ann. Geophys. 3, 673–688.Google Scholar
  17. Blanc, E. and Jacobson, A. R.: 1989, ‘Observation of Ionospheric Disturbances Following a 5-kt Chemical Explosion, 2. Prolonged Anomalies and Stratifications in the Lower Thermosphere after Shock Passage’,Radio Science 24, 739–746.Google Scholar
  18. Boeck, W. L.: 1976, ‘Meteorological Consequences of Atmospheric Krypton-85’,Science 193, 195–198.Google Scholar
  19. Booker, H. G.: 1961, ‘A Local Reduction of F-Region Ionization due to Missile Transit’,J. Geophys. Res. 66, 1073–1079.Google Scholar
  20. Bowman, G. G.: 1962, ‘Some Effects of Nuclear Explosions on the Ionosphere’,Austral. J. Phys. 15, 405–419.Google Scholar
  21. Bremer, J.: 1992, ‘Ionospheric Trends in Mid-Latitudes as a Possible Indicator of the Atmospheric Greenhouse Effect’,J. Atmos. Terr. Phys. 54, 1505–1511.CrossRefGoogle Scholar
  22. Brinca, A. L.: 1972, ‘Whistler Side-Band Growth due to Nonlinear Wave-Particle Interaction’,J. Geophys. Res. 77, 3508–3523.Google Scholar
  23. Bullough, K., Kaiser, T. R. and Strangeways, H. J.: 1985, ‘Unintentional Man-Made Modification Effects in the Magnetosphere’,J. Atmos. Terr. Phys. 47, 1211–1223.CrossRefGoogle Scholar
  24. Bullough, K.: 1995, ‘Power-line Harmonic Radiation’, in H. Volland (ed.),CRC Handbook of Atmospherics, Vo. II, Second Edition, CRC Press, pp. 291–332.Google Scholar
  25. Cairns, I. H. and Gurnett, D. A.: 1991a, ‘Control of Plasma Waves Associated with the Space Shuttle by the Angle between the Orbiter's Velocity Vector and the Magnetic Field’,J. Geophys. Res. 96, 7591–7601.Google Scholar
  26. Cairns, I. H. and Gurnett, D. A.: 1991b, ‘Plasma Waves Observed in the Near Vicinity of the Space Shuttle’,J. Geophys. Res. 96, 13,913–13,929.Google Scholar
  27. Cannon, P. S., Turunen, T. and Rycroft, M. J.: 1982, ‘Ionospheric ELF Radio Signal Generation due to LF and/or MF Radio Transmissions-II. Interpretation’,J. Atmos. Terr. Phys. 44, 831–841.CrossRefGoogle Scholar
  28. Cerisier, J. C.: 1973, ‘A Theorical and Experimental Study of Nonducted VLF Waves after Propagation through the Magnetosphere’,J. Atmos. Terr. Phys. 35, 77–94.CrossRefGoogle Scholar
  29. Cicerone, R. J.: 1990, ‘Greenhouse Cooling up High’,Nature 344, 104–105.CrossRefGoogle Scholar
  30. Cornilleau-Wehrlin, N. and Gendrin, R.: 1979, ‘VLF Transmitter-Induced Quiet Bands: A Quantitative Interpretation”,J. Geophys. Res. 84, 882–890.Google Scholar
  31. Dalkir, Y. R., Lee, M. C., Groves, K. M. and Kuo, S. P.: 1992, ‘A Mechanism Responsible for the Observation of Symmetric Lower Hybrid Sidebands and a Low Frequency Mode in the Upper Ionosphere’,J. Geophys. Res. 97, 17,195–17,198.Google Scholar
  32. Dea, J. Y., Van Bise, W., Rauscher, E. A. and Boerner, W.-M.: 1991, ‘Observations of ELF Signatures Arising from Space Vehicle Disturbances of the Ionosphere”,Can. J. Phys. 69, 959–965.Google Scholar
  33. Devyaterikov, I. V., Ivanov, E. A., Kozlov, S. I. and Kudryavtsev, V. P.: 1984, ‘Effects of Acoustic Waves on the Behaviour of Charged Particles in the Low Ionosphere’,Cosmic Research 22, 197–200.Google Scholar
  34. Dowden, R. L., McKay, A. D., Amon, L. E. S., Koons, H. C. and Dazey, M. H.: 1978, ‘Linear and Nonlinear Amplification in the Magnetosphere During a 6.6.-kHz Transmission’,J. Geophys. Res. 83, 169–181.Google Scholar
  35. Dowden, R. L.: 1982, ‘Detrapping by an Additional Wave of Wave-Trapped Electrons’,J. Geophys. Res. 87, 6237–6242.Google Scholar
  36. Dowden, R. L.: 1985, ‘Wave-Electron Interactions Induced by VLF Transmissions’,J. Atmos. Terr. Phys. 47, 1297–1302.CrossRefGoogle Scholar
  37. Dowden, R. L. and Adams, C. D. D.: 1992, ‘Ionospheric Heating by VLF Transmitters?’,J. Atmos. Terr. Phys. 54, 1051–1059.CrossRefGoogle Scholar
  38. Dysthe, K. B.: 1971, ‘Some Studies of Triggered Emissions’,J. Geophys. Res. 76, 6915–6931.Google Scholar
  39. Dzhordzhio, N. V., Mogilevski, M. M., Chmyrev, V. M., Kavrazhkin, R. A., Molchanov, O. A., Gal'perin, Yu. I., Bosqued, J. M., Rauch, J. L.: 1987, ‘Acceleration of Ions in the Plasma Environment of the Earth by the Radiation from a Low-Frequency Transmitter on the Ground’,JETP Lett. 46, 405–409.Google Scholar
  40. Evans, L. B., Bass, H. E. and Sutherland, L. C.: 1972, ‘Atmospheric Absorption of Sound: Theoretical Predictions’,J. Acoust. Soc. America 51, 1565–1575.Google Scholar
  41. Fejer, J. A.: 1979, ‘Ionospheric Modification and Parametric Instabilities’,Rev. Geophys. Space Phys. 17, 135–153.Google Scholar
  42. Ferraro, A. J., Lee, H. S., Allshouse, R., Carroll, K., Tomko, A. A., Kelly, F. J. and Joiner, R. G.: 1982, ‘VLF/ELF Radiation from the Ionospheric Dynamo Current System Modulated by Powerful HF Signals’,J. Atmos. Terr. Phys. 44, 1113–1122.CrossRefGoogle Scholar
  43. Forbes, J. M.: 1980, ‘Upper Atmosphere Modifications due to Chronic Discharges of Water Vapour from Space Launch Vehicle Exhausts’, in H. B. Garrett and C. P. Pike (eds.),Space Systems and Their Interactions with Earth's Space Environment. American Institute of Aeronautics and Astronautics, New York, pp. 78–98.Google Scholar
  44. Francis, S. H.: 1975, ‘Global Propagation of Atmospheric Gravity Waves: a Review’,J. Atmos. Terr. Phys. 37, 1011–1054.CrossRefGoogle Scholar
  45. Franzblau, E. and Popp, C. J.: 1989, ‘Nitrogen Oxides Produced from Lightning’,J. Geophys. Res. 94, 11,089–11,104.Google Scholar
  46. Fraser-Smith, A. C.: 1981, ‘Effects of Man on Geomagnetic Activity and Pulsations’,Adv. Space Res. 1, 455–466.CrossRefGoogle Scholar
  47. Galejs, J.: 1972. ‘Ionospheric Interaction of VLF Radio Waves’,J. Atmos. Terr. Phys. 34, 421–436.CrossRefGoogle Scholar
  48. Gal'perin, Yu. I., Gladishev, V. A., Dzhordzhio, N. V., Kovrazhkin, R. A., Lisakov, Yu. V. Maslov, V. D., Nikolayenko, L. M., Sagdeyev, R. Z., Molchanov, O. A., Mogilevski, M. M., Al'perovich, L. S., Gokhberg, M. B., Ivanov, Ye. A., Pokhotelov, O. A., Beghin, C., Berthelier, J. J., Bosqued, J. M. and Réme, H.: 1985, ‘The Alfvén Wave Excited in the Middle-Latitude Magnetosphere by a Large Scale Acoustical Wave which is Propagated in the Lower Ionosphere’,Izv. Ac. of Sci. USSR (Physics of the Solid Earth) 22, 877–884.Google Scholar
  49. Gatsonis, N. A. and Hastings, D. E.: 1992, ‘Evolution of the Plasma Environment Induced around Spacecraft by Gas Release: Three-Dimensional Modelling’,J. Geophys. Res. 97, 14,989–15,005.Google Scholar
  50. Givishvili, G. V. and Leshchenko, L. N.: 1993, ‘D Region Depletions above The Persian Gulf’,J. Atmos. Terr. Phys. 55, 125–128.CrossRefGoogle Scholar
  51. Groves, K. M., Lee, M. C. and Kuo, S. P.: 1988, ‘Spectral Broadening of VLF Radio Signals Traversing the Ionosphere’,J. Geophys. Res. 93, 14,683–14,687.Google Scholar
  52. Gurevich, A. V.: 1978,Nonlinear Phenomena in the Ionosphere, Springer-Verlag, New-York.Google Scholar
  53. Hao, W. M. and Ward, D. E.: 1993, ‘Methane Production from Global Biomass Burning’,J. Geophys. Res. 98, 20,657–20,661.Google Scholar
  54. Hastings, D. E.: 1995, ‘A Review of Plasma Interactions with Spacecraft in Low Earth Orbit’,J. Geophys. Res. 100, 14,457–14,483.Google Scholar
  55. Hauglustaine, D. A., Granier, C., Brasseur, G. P. and Mégie, G.: 1994, ‘Impact of Present Aircraft Emissions of Nitrogen Oxides on Tropospheric Ozone and Climate Forcing’,Geophys. Res. Lett. 21, 2031–2034.CrossRefGoogle Scholar
  56. Helliwell, R. A.: 1967, ‘A Theory of Discrete VLF Emissions from the Magnetosphere’,J. Geophys. Res. 72, 4773–4790.Google Scholar
  57. Helliwell, R. A., Katsufrakis, J. P., Bell, T. F. and Raghuram, R.: 1975, ‘VLF Line Radiation in the Earth's Magnetosphere and its Association with Power System Radiation’,J. Geophys. Res. 80, 4249–4258.Google Scholar
  58. Helliwell, R. A.: 1988, ‘VLF Wave Stimulation Experiments in the Magnetosphere from Siple Station, Antarctica’,Rev. Geophys. 26, 551–578.Google Scholar
  59. Holmgren, G.: 1983, ‘Experimental and Theorical Aspects of the Generation of MHD Waves by Chemical Releases in the Ionosphere’,ESA SP-195, 249–253.Google Scholar
  60. Imhof, W. L., Voss, H. D., Walt, M., Gaines, E. E., Mobilia, J., Datlowe, D. W. and Reagan, J. B.: 1986, ‘Slot Region Electron Precipitation by Lightning, VLF Chorus, and Plasmaspheric Hiss’,J. Geophys. Res. 91, 8883–8894.Google Scholar
  61. Inan, U. S., Bell, T. F. and Helliwell, R. A.: 1978, ‘Nonlinear Pitch Angle Scattering of Energetic Electrons by Coherent VLF Waves in the Magnetosphere’,J. Geophys. Res. 83, 3235–3253.Google Scholar
  62. Inan, U. S., Bell, T. F. and Chang, H. C.: 1982, ‘Particle Precipitation Induced by Short-Duration VLF Waves in the Magnetosphere’,J. Geophys. Res. 87, 6243–6264.Google Scholar
  63. Inan, U. S., Chang, H. C. and Helliwell, R. A.: 1984, ‘Electron Precipitation Zones around Major Ground-Based VLF Signal Sources’,J. Geophys. Res. 89, 2891–2906.Google Scholar
  64. Inan, U. S., Chang, H. C., Helliwell, R. A., Imhof, W. L., Reagan, J. B. and Walt, M.: 1985, ‘Precipitation of Radiation Belt Electrons by Man-Made Waves: A Comparison between Theory and Measurement’,J. Geophys. Res. 90, 359–369.Google Scholar
  65. Inan, U. S.: 1990, ‘VLF Heating of the Lower Ionosphere’,Geophys. Res. Lett. 17, 729–732.Google Scholar
  66. Inan, U. S., Bell, T. F. and Rodriguez, J. V.: 1991, ‘Heating and Ionization of the Lower Ionosphere by Lightning’,Geophys. Res. Lett. 18, 705–709.Google Scholar
  67. Inan, U. S., Rodriguez, J. V., Lev-Tov, S. and Oh, J.: 1992, ‘Ionospheric Modification with a VLF Transmitter’,Geophys. Res. Lett. 19, 2071–2074.Google Scholar
  68. Israelsson, S. and Knudsen, E.: 1986, ‘Effects of Radioactive Fallout from a Nuclear Power Plant Accident on Electrical Parameters’,J. Geophys. Res. 91, 11,909–11,910.Google Scholar
  69. Jacobson, A. R.: 1986, ‘A Model for Conjugate Coupling from Ionospheric Dynamos in the Acoustic Frequency Range’,J. Geophys. Res. 91, 4404–4412.Google Scholar
  70. Jacobson, A. R., Carlos, R. C. and Blanc, E.: 1988, ‘Observations of Ionospheric Disturbances Following a 5-kiloton Chemical Explosion: 1.Persistent Oscillation in Lower Thermosphere after Shock Passage’,Radio Sci. 23, 820–830.Google Scholar
  71. Jacobson, A. R. and Carlos, R. C.: 1994, ‘Observations of Acoustic-Gravity Waves in the Thermosphere Following Space Shuttle Ascents’,J. Atmos. Terr. Phys. 56, 525–528.CrossRefGoogle Scholar
  72. James, H. G.: 1985, ‘The ELF Spectrum of Artificially Modulated D/E — Region Conductivity’,J. Atmos. Terr. Phys. 47, 1129–1142.CrossRefGoogle Scholar
  73. Johnston, H. S., Kinninson, D. E. and Wuebbles, D. J.: 1989, ‘Nitrogen Oxides from High-Altitude Aircraft: An Update of Potential Effect on Ozone’,J. Geophys. Res. 94, 16,351–16,363.Google Scholar
  74. Karlov, V. D., Kozlov, S. I. and Tkachev, G. N.: 1980, ‘Large-Scale Disturbances in the Ionosphere Occurring during the Flight of a Rocket with an Operating Engine (Survey)’,Cosmic Research 18, 214–224.Google Scholar
  75. Kessler, D. J. and Cour-Palais, B. G.: 1980, ‘Collision Frequency of Artificial Satellites: Creation of a Debris Belt’, in H. B. Garrett and C. P. Pike (eds.),Space Systems and Their Interactions with Earth's Space Environment, American Institute of Aeronautics and Astronautics, New York, pp. 707–736.Google Scholar
  76. Klostermeyer, J.: 1972, ‘Numerical Calculations of Gravity Wave Propagation in a Realistic Thermosphere’,J. Atmos. Terr. Phys. 34, 765–774.CrossRefGoogle Scholar
  77. Klostermeyer, J.: 1973, ‘Thermospheric Heating by Atmospheric Gravity Waves’,J. Atmos. Terr. Phys. 35, 2267–2275.CrossRefGoogle Scholar
  78. Koons, H. C., Dazey, M. H. and Edgar, B. C.: 1978, ‘Satellite Observation of Discrete VLF Line Radiation within Transmitter-Induced Amplification Bands’,J. Geophys. Res. 83, 3887–3889.Google Scholar
  79. Koons, H. C., Edgar, B. C. and Vampola, A. L.: 1981, ‘Precipitation of Inner Zone Electrons by Whistler Mode Waves from the VLF Transmitters UMS and NWC’,J. Geophys. Res. 86, 640–648.Google Scholar
  80. Krechetov, V. V.: 1988, ‘Generation of VLF Emissions in Connection with Acoustic Disturbances in the Atmosphere’,Geomagn. Aeron. 28, 725–728.Google Scholar
  81. Kulikov, V. V., Shashun'kina, V. M. and Yudovich, L. A.: 1982, ‘Excitation of IGW after the Fall of Skylab’,Geomagn. Aeron. 22, 416–417.Google Scholar
  82. Kuo, S. P. and Lee, M. C.: 1989, ‘Parametric Excitation of Whistler Waves by HF Heater’,J. Atmos. Terr. Phys. 51, 727–731.CrossRefGoogle Scholar
  83. Kuo, S. P.: 1993, ‘Generation of ELF and VLF Waves by a Thermal Instability Excited in the HF Heater-Modulated Polar Electrojet’,Radio Science 28, 1019–1027.Google Scholar
  84. Lee, M. C. and Kuo, S. P.: 1984, ‘Production of Lower Hybrid Waves and Field-Aligned Plasma Density Striations by Whistlers’,J. Geophys. Res. 89, 10,873–10,880.Google Scholar
  85. Leyser, T. B.: 1991, ‘Parametric Interaction between Upper Hybrid and Lower Hybrid Waves in Heating Experiments’,Geophys. Res. Lett. 18, 408–411.Google Scholar
  86. Li, Y. Q., Jacobson, A. R., Carlos, R. C., Massey, R. S., Taranenko, Y. N. and Wu, G.: 1994, ‘The Blast Wave of the Shuttle Plume at Ionospheric Heights’,Geophys. Res. Lett. 21, 2737–2740.CrossRefGoogle Scholar
  87. Kiszka, L. and Olsson, S.: 1971, ‘On the Generation and Detection of Artificial Atmospheric Waves’,J. Atmos. Terr. Phys. 33, 1933–1939.CrossRefGoogle Scholar
  88. Longmire, C. L.: 1995, ‘Electromagnetic Effects of Nuclear Explosions’, in H. Volland (ed.),CRC Handbook of Atmospherics, Vol. II, Second Edition, CRC Press, pp. 135–153.Google Scholar
  89. Machuzak, J. S., Burke, W. J., Retterer, J. M., Hunton, D. E., Jasperse, J. R. and Smiddy, M.: 1993, Effects of Thruster Firings on the Shuttle's Plasma and Electric Field Environment’,J. Geophys. Res. 98, 1513–1530.Google Scholar
  90. Maiss, M. and Levin, I.: 1994, ‘Global Increase of SF6 in the Atmosphere’,Geophys. Res. Lett. 21, 569–572.CrossRefGoogle Scholar
  91. Maslin, N. M.: 1974, ‘Theory of Energy Flux and Polarization Changes of a Radio Wave with Two Magnetoionic Components Undergoing Self Demodulation in the Ionosphere’,Proc. R. Soc. Lond. A 341, 361–381.Google Scholar
  92. Maslin, N. M.: 1976, ‘Estimating Ionospheric Cross-Modulation’,Proc. R. Soc. Lond. A 351, 277–293.Google Scholar
  93. Matsumoto, H.: 1979, ‘Nonlinear Whistler Mode Interactions and Triggered Emissions in the Magnetosphere: A Review’ in P. J. Palmadesso and K. Papadopoulos (eds.),Wave Instabilities in Space Plasmas, D. Reidel, Norwell, Mass., pp. 163–190.Google Scholar
  94. Matthews, J. P. and Yearby, K.: 1981, ‘Magnetospheric VLF Line Radiation Observed at Halley, Antarctica’,Planet. Space Sci. 29, 97–106.CrossRefGoogle Scholar
  95. Matthews, J. P., Omura, Y. and Matsumoto, H.: 1984, ‘A Study of Particle Trapping by Whistler Mode Waves in the Geomagnetic Field: The Early Development of the VLF Quiet Band’,J. Geophys. Res. 89, 2275–2287.Google Scholar
  96. Mendillo, M., Hawkings, G. S. and Klobuchar, J. A.: 1975, ‘A Sudden Vanishing of the Ionospheric F Region due to the Launch of Skylab’,J. Geophys. Res. 80, 2217–2228.Google Scholar
  97. Mendillo, M.: 1980, ‘Modification of the Ionosphere by Large Space Vehicles’, in H. B. Garrett and C. P. Pike (eds.),Space Systems and Their Interactions With Earth's Space Environment, American Institute of Aeronautics and Astronautics, New York, pp. 99–117.Google Scholar
  98. Mendillo, M.: 1988, ‘Ionospheric Holes: a Review of Theory and Recents Experiments’,Adv. Space Res. 8, 51–62.CrossRefGoogle Scholar
  99. Miesen, R. H. M., de Jagher, P. C., Kamp, L. P. J. and Sluuter, F. W.: 1989, ‘Damping of Acoustic Gravity Waves Caused by the Conductivity of the Ionosphere’,J. Geophys. Res. 94, 16,269–16,275.Google Scholar
  100. Miesen, R. H. M.: 1991, ‘Damping Rates for Acoustic Gravity Waves in the Ionosphere’,J. Geophys. Res. 96, 15,359–15,364.Google Scholar
  101. Molchanov, O. A., Parrot, M., Mogilevsky, M. M. and Lefeuvre, F.: 1991, ‘A Theory of PLHR Emissions to Explain the Weekly Variations of ELF Data Observed by a Low-Altitude Satellite’,Ann. Geophys. 9, 669–680.Google Scholar
  102. Molchanov, O. A. and Parrot, M.: 1995, ‘PLHR Emissions Observed on Satellites’,J. Atmos. Terr. Phys. 57, 493–505.CrossRefGoogle Scholar
  103. Nagorskiy, P. M.: 1985, ‘Perturbations of the Electron Concentration in the Ionosphere Induced by Ground-Level Explosions’,Izv. Ac. of Sci. USSR (Physics of the Solid Earth) 22, 860–863.Google Scholar
  104. Neubert, T., Bell, T. F. and Storey, L. R. O.: 1987, ‘Resonance between Coherent Whistler Mode Waves and Electrons in the Topside Ionosphere’,J. Geophys. Res. 92, 255–265.Google Scholar
  105. Noble, S. T.: 1990, ‘A Large-Amplitude Travelling Ionospheric Disturbance Excited by the Space Shuttle During Launch’,J. Geophys. Res. 95, 19,037–19,044.Google Scholar
  106. Nunn, D.: 1971, ‘A Theory of VLF Emissions’,Planet. Space Sci. 19, 1141–1167.CrossRefGoogle Scholar
  107. Nunn, D.: 1974, ‘A Self-Consistent Theory of Triggered VLF Emissions’,Planet. Space Sci. 22, 349–378.CrossRefGoogle Scholar
  108. Nunn, D.: 1986, ‘A Nonlinear Theory of Sideband Stability in Ducted Whistler Mode Waves’,Planet. Space Sci. 34, 429–451.CrossRefGoogle Scholar
  109. Nunn, D.: 1990, ‘The Numerical Simulation of VLF Nonlinear Wave-Particle Interactions in Collision-Free Plasmas using the Vlasov Hybrid Simulation Technique’,Computer Phys. Communications 60, 1–25.CrossRefGoogle Scholar
  110. Omura, Y., Nunn, D., Matsumoto, H. and Rycroft, M. J.: 1991, ‘A Review of Observational, Theoretical, and Numerical Studies of VLF Triggered Emissions’,J. Atmos. Terr. Phys. 53, 351–368.CrossRefGoogle Scholar
  111. Orlov, V. V. and Uralov, A. M.: 1984, ‘Response of the Atmosphere to a Weak Ground Explosion’,Izv. AN SSSR (Atmospheric and Oceanic Physics) 20, 457–462.Google Scholar
  112. Papadopoulos, K. and Szuszczewicz, E. P.: 1988, ‘Current Understanding and Issues on Electron Beam Injection in Space’,Adv. Space Res. 8, 101–110.CrossRefGoogle Scholar
  113. Park, C. G. and Dejnakarintra, M.: 1973, ‘Penetration of Thunderclouds Electric Fields into the Ionosphere and Magnetosphere’,J. Geophys. Res. 78, 6623–6633.Google Scholar
  114. Park, C. G. and Helliwell, R. A.: 1978, ‘Magnetospheric Effects of Power Line Radiation’,Science 200, 727–730.Google Scholar
  115. Park, C. G. and Helliwell, R. A.: 1981, ‘Power Line Radiation in the Magnetosphere’,Adv. Space Res. 1, 423–437.CrossRefGoogle Scholar
  116. Parrot, M.: 1990, ‘World Map of ELF/VLF Emissions as Observed by a Low-Orbiting Satellite’,Ann. Geophys. 8, 135–146.Google Scholar
  117. Parrot, M., Molchanov, O. A., Mogilievski, M. M. and Lefeuvre, F.: 1991, ‘Daily Variations of ELF Data Observed by a Low Altitude Satellite’,Geophys. Res. Lett. 18, 1039–1042.Google Scholar
  118. Parrot, M.: 1994, ‘Observations of Power Line Harmonic Radiation by the Low-Altitude AUREOL-3 Satellite’,J. Geophys. Res. 99, 3961–3969.CrossRefGoogle Scholar
  119. Peter, Th., Brühl, C. and Crutzen, P. J.: 1991, ‘Increase in the PSC-Formation Probability Caused by High-Flying Aircraft’,Geophys. Res. Lett. 18, 1465–1468.Google Scholar
  120. Pickett, J. S., Murphy, G. B., Kurth, W. S. and Shawhan, S. D.: 1985, ‘Effects of Chemical Releases by the STS 3 Orbiter on the Ionosphere’,J. Geophys. Res. 90, 3487–3497.Google Scholar
  121. Pierce, E. T.: 1972, ‘Radioactive Fallout and Secular Effects in Atmospheric Electricity’,J. Geophys. Res. 77, 482–487.Google Scholar
  122. Pierce, E. T.: 1976, ‘Atmospheric Electricity and Earthquake Prediction’,Geophys. Res. Lett. 3, 185–188.Google Scholar
  123. Pokhotelov, O. A., Pilipenko, V. A., Fedorov, E. N., Stenflo, L. and Shukla, P. K.: 1994, ‘Induced Electromagnetic Turbulence in the Ionosphere and the Magnetosphere’,Physica Scripta 50, 600–605.Google Scholar
  124. Pokhotelov, O. A., Parrot, M., Fedorov, E. N., Pilipenko, V. A., Surkov, V. V. and Gladychev, V. A.: 1995, ‘Response of the Ionosphere to Natural and Man Made Acoustic Sources’,Ann. Geophys. 13, 1197–1210.Google Scholar
  125. Price, C. and Rind, D.: 1994, ‘Possible Implications of Global Climate Change on Global Lightning Distributions and Frequencies’,J. Geophys. Res. 99, 10,823–10,831.Google Scholar
  126. Price, G. H.: 1974, ‘The Electromagnetic Pulse from Nuclear Detonations’,Rev. Geophys. Space Phys. 12, 389–400.Google Scholar
  127. Raemer, H. R.: 1972, ‘An Approach to the Analysis of Coupling between Acoustic-Gravity Waves and Electromagnetic Waves’, in:Effects of Atmospheric Acoustic Gravity Waves on Electromagnetic Wave Propagation, Conf. Proc., Vol. 115, AGARD, Harford House, London, pp. 31—1—31—10Google Scholar
  128. Raghuram, R., Bell, T. F., Helliwell, R. A. and Katsufrakis, J. P.: 1977, ‘A Quiet Band Produced by VLF Transmitter Signals in the Magnetosphere’,Geophys. Res. Lett. 4, 199–202.Google Scholar
  129. Raitt, W. J.: 1988, ‘Vehicle Environment Interactions: An Overview’,Adv. Space Res. 8, 177–186.CrossRefGoogle Scholar
  130. Retalis, D. and Pitta, A.: 1989, ‘Effects on Electrical Parameters at Athens, Greece, by Radioactive Fallout from a Nuclear Power Plant Accident’,J. Geophys. Res. 94, 13,093–13,097.Google Scholar
  131. Rietveld, M. T., Kohl, H., Kopka, H. and Stubbe, P.: 1993, ‘Introduction to Ionospheric Heating at Tromsó — 1. Experimental Over’,J. Atmos. Terr. Phys. 55, 577–599.CrossRefGoogle Scholar
  132. Riggin, D. and Kelley, M. C.: 1982, ‘The Possible Production of Lower Hybrid Parametric Instabilities by VLF Ground Transmitters and by Natural Emissions’,J. Geophys. Res. 87, 2545–2548.Google Scholar
  133. Rind, D.: 1977, ‘Heating of the Lower Thermosphere by the Dissipation of Acoustic Waves’,J. Atmos. Terr. Phys. 39, 445–456.Google Scholar
  134. Rishbeth, H.: 1990, ‘A Greenhouse Effect in the Ionosphere?’,Planet. Space Sci,38, 945–948.CrossRefGoogle Scholar
  135. Rishbeth, H. and Roble, R. G.: 1992, ‘Cooling of the Upper Atmosphere by Enhanced Greenhouse Gases — Modelling of Thermospheric and Ionospheric Effects’,Planet. Space Sci. 40, 1011–1026.CrossRefGoogle Scholar
  136. Rivas, D. R. and Hastings, D. E.: 1992, ‘Theoretical Interpretation of the Electrostatic Waves in the Space Shuttle Induced Plasma Environment’,J. Geophys. Res. 97, 17,097–17,113.Google Scholar
  137. Robinson, T. R.: 1989, ‘The Heating of the High Latitude Ionosphere by High Power Radio Waves’,Physics Reports 179, 79–209.CrossRefGoogle Scholar
  138. Robinson, T. R.: 1990, ‘Disturbing Effects of Radio’,Nature 346, 612–613.CrossRefGoogle Scholar
  139. Roble, R. G. and Dickinson, R. E.: 1989, ‘How Will Changes in Carbon Dioxide and Methane Modify the Mean Structure of the Mesosphere and Thermosphere?’,Geophys. Res. Lett. 16, 1441–1444.Google Scholar
  140. Rodriguez, J. V. and Inan, U. S.: 1994, ‘Electron Density Changes in the Nighttime D Region due to Heating by Very-Low-Frequency Transmitters’,Geophys. Res. Lett. 21, 93–96.CrossRefGoogle Scholar
  141. Rodriguez, J. V., Inan, U. S. and Bell, T. F.: 1994, ‘Heating of the Nighttime D Region by Very Low Frequency Transmitters’,J. Geophys. Res. 99, 23,329–23,338.Google Scholar
  142. Rote, D. M.: 1980, ‘Environmental Effects of Space Systems: A Review’, in H. B. Garrett and C. P. Pike (eds.),Space Systems and Their Interactions with Earth's Space Environment, American Institute of Aeronautics and Astronautics, New York, pp. 3–53.Google Scholar
  143. Roux, A. and Pellat, R.: 1978: ‘A Theory of Triggered Emissions’,J. Geophys. Res. 83, 1433–1441.Google Scholar
  144. Sá, L. A. D.: 1990, ‘A Wave-Particle-Wave Interaction Mechanism as a Cause of VLF Triggered Emissions’,J. Geophys. Res. 95, 12,277–12,286.Google Scholar
  145. Samir, U., Comfort, R. H., Chappell, C. R. and Stone, N. H.: 1986, ‘Observations of Low-Energy Ions in the Wake of a Magnetospheric Satellite’,J. Geophys. Res. 91, 5725–5736.Google Scholar
  146. Serafimov, K. and Serafimova, M.: 1992, ‘Possible Radioindications of Anthropogenic Influences on the Mesosphere and Lower Thermosphere’,J. Atmos. Terr. Phys. 54, 847–850.CrossRefGoogle Scholar
  147. Shapiro, V. D. and Ride, S. K.: 1994, ‘Nonlinear Effects Involving Whistler Wave Propagation in the Magnetosphere’,J. Geophys. Res. 99, 17,237–17,247.Google Scholar
  148. Shklyar, D. R., Nunn, D., Smith, A. J. and Sazhin, S. S.: 1992, ‘An Investigation into the Nonlinear Frequency Shift in Magnetospherically Propagated VLF Pulses’,J. Geophys. Res. 97, 19,389–19,402.Google Scholar
  149. Shukla, P. K., Stenflo, L. and Borisov, N. D.: 1992, ‘Nonlinear Interaction of Powerful Radio Waves with the Plasma in the Earth's Lower Ionosphere’,J. Geophys. Res. 97, 12,279–12,281.Google Scholar
  150. Smith, A. J. and Clilverd, M. A.: 1991: ‘Magnetic Storm Effects on the Mid-Latitude Plasmasphere’,Planet. Space Sci. 39, 1069–1079.CrossRefGoogle Scholar
  151. Sotnikov, V. I., Fiala, V., Lefeuvre, F., Lagoutte, D. and Mogilevsky, M. M.: 1991, ‘Excitation of Sidebands due to Nonlinear Coupling between a VLF Transmitter Signal and a Natural ELF Emission’,J. Geophys. Res. 96, 11,363–11,369.Google Scholar
  152. Sudan, R. N. and Ott, E.: 1971, ‘Theory of Triggered VLF Emissions’,J. Geophys. Res. 76, 4463–4476.Google Scholar
  153. Taranenko, Yu. N. and Chmyrev, V. M.: 1989, ‘Parametric Interaction of Whistler and Electromagnetic Ion-Cyclotron Waves in the Ionospheric Plasma’,Geomagn. Aeron. 29, 407–411.Google Scholar
  154. Taranenko, Yu. N., Inan, U. S. and Bell, T. F.: 1992, ‘VLF-HF Heating of the Lower Ionosphere and ELF Wave Generation’,Geophys. Res. Lett. 19, 61–64.Google Scholar
  155. Tatnall, A. R. L., Matthews, J. P., Bullough, K. and Kaiser, T. R.: 1983, ‘Power-Line Harmonic Radiation and the Electron Slot’,Space Sci. Rev. 35, 139–173.CrossRefGoogle Scholar
  156. Thorne, R. M. and Tsurutani, B. T.: 1979, ‘Power-Line Harmonic Radiation: Can it significantly Affect the Earth's Radiation Belts’,Science 204, 839–841.Google Scholar
  157. Titova, E. E., Di, V. I., Yurov, V. E., Raspopov, O. M., Trakhtengertz, V. Yu., Jiricek, F. and Triska, P.: 1984, ‘Interaction between VLF Waves and the Turbulent Ionosphere’,Geophys. Res. Lett. 11, 323–326.Google Scholar
  158. Tolstoy, I. and Herron, T. J.: 1970, ‘Atmospheric Gravity Waves from Nuclear Explosions’,J. Atmos. Sci. 27, 55–61.CrossRefGoogle Scholar
  159. Tolstoy, I., Montes, H., Rao, G. and Willis, E.: 1970, ‘Long-Period Sound Waves in the Thermosphere from Apollo Launches’,J. Geophys. Res. 75, 5621–5625.Google Scholar
  160. Tomko, A. A., Ferraro, A. J., Lee, H. S. and Mitra, A. P.: 1980, ‘A Theoretical Model of D-Region Ion Chemistry Modifications during High Power Wave Heating’,J. Atmos. Terr. Phys. 42, 275–285.CrossRefGoogle Scholar
  161. Vampola, A. L.: 1987, ‘Electron Precipitation in the Vicinity of a VLF Transmitter’,J. Geophys. Res. 92, 4525–4532.Google Scholar
  162. Vampola, A. L.: 1990, ‘In-situ Observations of Magnetospheric Electron Scattering by a VLF Transmitter’,J. Atmos. Terr. Phys. 52, 377–384.CrossRefGoogle Scholar
  163. Wiesen, P., Kleffmann, J., Kurtenbach, R. and Becker, K. H.: 1994, ‘Nitrous Oxide and Methane Emissions from Aero Engines’,Geophys. Res. Lett. 21, 2027–2030.CrossRefGoogle Scholar
  164. Williams, E. R.: 1992, ‘The Schumann Resonance: A Global Tropical Thermometer’,Science 256, 1184–1187.Google Scholar
  165. Yearby, K. H., Smith, A. J., Kaiser, T. R. and Bullough, K.: 1983, ‘Power Line Harmonic Radiation in Newfoundland’,J. Atmos. Terr. Phys. 45, 409–419.Google Scholar
  166. Yeh, K. C. and Liu, C. H.: 1974, ‘Acoustic Gravity Waves in the Upper Atmosphere’,Rev. Geophys. Space Physics 12, 193–216.Google Scholar
  167. Zasov, G. F., Karlov, V. D. and Romanchuk, T. E.: 1977, ‘Observations of Disturbances in the Lower Ionosphere during “Soyuz-Apollo” Experiments’,Geomagn. Aeron. 17, 234–235.Google Scholar
  168. Zhong, W., Haigh, J. D. and Pyle, J. A.: 1993, ‘Greenhouse Gases in the Stratosphere’,J. Geophys. Res. 98, 2995–3004.Google Scholar
  169. Zhou, D. K., Pendleton Jr., W. R., Bingham, G. E., Thompson, D. C., Raitt, W. J. and Nadile, R. M.: 1994, ‘IR Excitation of Contaminant Water by Oxygen for the Space Shuttle at Low Earth Orbit Altitude’,J. Geophys. Res. 99, 19,585–19,596.Google Scholar
  170. Zinn, J., Sutherland, C. D., Stone, S. N. and Duncan, L. M.: 1982, ‘Ionospheric Effects of Rocket Exhaust Products — HEAO-C, Skylab’,J. Atmos. Terr. Phys. 44, 1143–1171.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • M. Parrot
    • 1
  • Y. Zaslavski
    • 1
  1. 1.LPCE/CNRSOrléans Cédex 2France

Personalised recommendations