Acta Mathematica Hungarica

, Volume 51, Issue 1–2, pp 125–149 | Cite as

Hyperstonean cover and second dual extension

  • V. K. Zaharov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Wada, Stonian spaces and the second conjugate spaces of AM-spaces,Osaka Math. J.,9 (1957), 195–200.Google Scholar
  2. [2]
    S. Kaplan, On the second dual of the space of continuous functions I, II, III, IV,Trans. Amer. Math. Soc.,I 86 (1957), 70–90;II 93 (1957), 329–350; III101 (1961), 34–51; IV113 (1964), 512–546.Google Scholar
  3. [3]
    J. Mach, The order dual of the space of Radon measures,Trans. Amer. Math. Soc.,113 (1964) 219–239.Google Scholar
  4. [4]
    Z. Semadeni, Spaces of continuous functions on compact sets,Advanc. Math.,1 (1965), 319–382.Google Scholar
  5. [5]
    H. Gordon, The maximal ideal space of a ring of measurable functions,Amer. J. Math.,88 (1966), 827–843.Google Scholar
  6. [6]
    S. Kaplan, The unbounded bidual ofC(X), Ill.J. Math.,17 (1973), 619–645.Google Scholar
  7. [7]
    C. Shannon, The second dual ofC(X), Pacif. J. Math.,72 (1977), 237–253.Google Scholar
  8. [8]
    D. Sentilles, AnL 1-space for Boolean algebras and semi-reflexivity of spacesL (X, Σ, μ),Trans. Amer. Math. Soc.,226 (1977), 1–37.Google Scholar
  9. [9]
    W. H. Graves, On the theory of vector measures,Mem. Amer. Math. Soc.,195 (1977).Google Scholar
  10. [10]
    W. H. Graves, D. Sentilles, The extension and completion of the universal measure and the dual of the space of measures,J. Math. Anal. Appl.,68 (1979), 228–264.Google Scholar
  11. [11]
    C. Constantinescu,Duality in measure theory, Lecture Notes in Math., 796, Springer-Verlag (Berlin, 1980).Google Scholar
  12. [12]
    M. Cambern, P. Greim, The bidual ofC(X, E), Proc. Amer. Math. Soc.,85 (1982), 53–58.Google Scholar
  13. [13]
    C. H. Brook, On the universal measure space,J. Math. Anal. Appl.,85 (1982), 584–598.Google Scholar
  14. [14]
    Б. З. Вулих, Определе ние произведения в ли нейном полуупорядоч енном пространствеДАН СССР,26 (1940), 847–851.Google Scholar
  15. [15]
    S. Kakutani, Concrete representation of abstractM-spaces (A characterization of the space of continuous functions),Ann. Math.,42 (1941), 994–1024.Google Scholar
  16. [16]
    R. F. Arens, Operations induced in functional classes,Monatsh. Math.,55 (1951), 1–19.Google Scholar
  17. [17]
    A. Grothendieck, Un résultat sur le dual d'uneC *-algèbre,J. Math. Pures Appl.,36 (1957), 97–108.Google Scholar
  18. [18]
    D. A. Edwards, A class of topological Boolean algebras,Proc. London Math. Soc.,13 (1963), 413–429.Google Scholar
  19. [19]
    S. P. Lloyd, A mixing condition for extreme left invariant means,Trans. Amer. Math. Soc.,125 (1966), 461–481.Google Scholar
  20. [20]
    G. L. Seever, Nonnegative projections onC 0(X),Pacif. J. Math.,17 (1966), 159–166.Google Scholar
  21. [21]
    J. Flachsmeyer, Topologization of Boolean algebras,General Topology and its Relations to Modern Analysis and Algebra IV (Prague, 1976), Lecture Notes in Math.,609 (1977), 81–97.Google Scholar
  22. [22]
    V. Zaharov, Characterization of the hyperstonean cover of a compact,Proc. Conf. Topology and Measure III (Vitte, GDR, 1980), Greifswald, 1982, 357–359.Google Scholar
  23. [23]
    В. К. Захаров, Харак теризация гиперзтоу нова накрытия компак та,Функц. анализ и его прилож.,15 (1981), 79–80.Google Scholar
  24. [24]
    V. Zaharov, On the hyperstonian cover of a compact,Math. Nachr.,107 (1982), 175–186.Google Scholar
  25. [25]
    V. Zaharov, Topological and algebraical aspects of some sets of measurable functions,General Topology and its Relations to Modern Analysis and Algebra V (Prage, 1981), “Heldermann Verlag”, Berlin, 1982, 706–712.Google Scholar
  26. [26]
    В. К. Захаров, Гипер стоунов абсолют впол не регулярного прост ранства,ДАН СССР,267 (1982), 280–283.Google Scholar
  27. [27]
    V. K. Zaharov, On hyperstonean absolute and Borel cover,Тезисы Л енинградской междун. тополог, конф., Наука (Ленинград, 1982), 169.Google Scholar
  28. [28]
    V. K. Zaharov, Topological characterization of the hyperstonean cover,Proc. Topol. Conf. Leningrad, 1982), Lecture Notes in Math.,1060 (1984), 115–118.Google Scholar
  29. [29]
    V. K. Zaharov, Some perfect preimages connected with extensions of the family of continuous functions,Topology Theory and Appl., Proceedings of the Topological Conference (Eger, Hungary, 1983), J. Bolyai Math. Soc. - North Holland, 1985.Google Scholar
  30. [30]
    В. К. Захаров, О двух классических расшир ениях векторной реше тки непрерывных функ ций,Функц. анализ и ег о прилож.,18 (1984), 92–93.Google Scholar
  31. [31]
    А. В. Архангельский, В. И. Пономарев,Осно вы общей топологии в з адачах и упражнениях, Наука (Москва, 1974).Google Scholar
  32. [32]
    J. Lambek,Lectures on rings and modules, Blaisdell Publishing Company (Toronto, 1966).Google Scholar
  33. [33]
    L. Fuchs,Partially ordered algebraic systems, Pergamon Press (Oxford, 1963).Google Scholar
  34. [34]
    N. Bourbaki,Intégration, Hermann (Paris, 1963).Google Scholar
  35. [35]
    Z. Semadeni,Banach spaces of continuous functions, Polish Scientific Publishers (Warszawa, 1971).Google Scholar
  36. [36]
    W. A. J. Luxemburg, A. C. Zaanen,Riesz spaces, North-Holland Publishing Company (Amsterdam, 1971).Google Scholar
  37. [37]
    R. Sikorski,Boolean algebras, Springer-Verag (Berlin, 1964).Google Scholar
  38. [38]
    J. L. Kelley, Measures in Boolean algebras,Pacif. J. Math.,9 (1959), 1165–1177.Google Scholar
  39. [39]
    J. -P. Delfosse, Caractérisations d'anneaux de fonctions continues,Ann. Soc. Sci. Bruxelles, sér. I,89 (1975), 364–368.Google Scholar
  40. [40]
    K. Kuratowski,Topology, v.l, Academic Press (New York-London, 1966).Google Scholar
  41. [41]
    V. K. Zaharov, A. B. Koldunov, Characterization of theσ-cover of a compact,Math. Nachr.,107 (1982), 7–16.Google Scholar
  42. [42]
    E. Hewitt, K. Stromberg,Real and abstract analysis, Springer-Verlag (Berlin, 1965).Google Scholar
  43. [43]
    Y. Mibu, Relations between measure and topology in some Boolean spaces,Proc. Imp. Acad. Toko,20 (1944), 454–558.Google Scholar
  44. [44]
    J. B. Cooper,Saks spaces and applications to functional analysis, North-Holland Publishing Company (Amsterdam, 1978).Google Scholar
  45. [45]
    Б. З.Вулих,Введение в теорию полуупорядоч енных пространств, Го с. изд. физ.-мат. лит; (Моск ва, 1961).Google Scholar

Copyright information

© Akadémiai Kiadó 1988

Authors and Affiliations

  • V. K. Zaharov
    • 1
  1. 1.Institute of Textile and Light IndustryLeningradUSSR

Personalised recommendations