Advertisement

Packing of spheres in spaces of constant curvature

  • K. Böröczky
Article

Keywords

Constant Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. F. Blichfeld, The minimum value of quadratic forms and the closest packing of spheres,Math. Ann.,101 (1929), 605–608.Google Scholar
  2. [2]
    K. Böröczky-A. Florian, Über die dichteste Kugelpackung in hyperbolischen Raum,Acta Math. Acad. Sci. Hungar.,15 (1964), 237–245.Google Scholar
  3. [3]
    K. Böröczky, Gömbkitöltés állandó görbületü terekben,Mat. Lapok,25 (1974) (in Hungarian).Google Scholar
  4. [4]
    H. S. M. Coxeter, Arrangements of equal spheres in non-Euclidean spaces,Acta Math. Acad. Sci. Hungar.,4 (1954), 263–274.Google Scholar
  5. [5]
    H. Davenport-G. Hajós, 35. feladat,Mat. Lapok,2 (1951), 68 (in Hungarian).Google Scholar
  6. [6]
    L. Fejes Tóth: Über die dichteste Kugellagerung,Math. Zeitschrift,48 (1943), 676–684.Google Scholar
  7. [7]
    L. Fejes Tóth, Kreisausfüllungen der hyperbolischen Ebene,Acta Math. Acad. Sci. Hungar.,4 (1953), 103–110.Google Scholar
  8. [8]
    L. Fejes Tóth, Über die dichteste Horozyklenlagerung,Acta Math. Acad. Sci. Hungar.,5 (1954), 41–44.Google Scholar
  9. [9]
    C. F. Gauss, Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber,Göttingische gelehrte Anzeigen, 1831 Juli 9, seeWerke, Göttingen, 1836 II, 188–196.Google Scholar
  10. [10]
    J. L. Lagrange, Recherches d'arithmétique,Neuveaux Memoires de l'Académie royal des Sciences et Belles-Lettres de Berlin (1773), 265–312; Oeuvres, III, 693–758.Google Scholar
  11. [11]
    V. I. Levenstein, О Максимальной плотности заполненияn-мерного евклидова пространства равнЫми шарами,Мам. замемки 18 (1975), 301–311.Google Scholar
  12. [12]
    R. A. Rankin, On the closest packing of spheres inn-dimensions,Ann. Math. Princeton II,48 (1947), 1062–1081.Google Scholar
  13. [13]
    R. A. Rankin, The closest packing of spherical caps inn-dimensions,Proc. Glasgow Math. Ass.,2 (1955), 139–144.Google Scholar
  14. [14]
    C. A. Rogers, The packing of the equal spheres,Proc. London Math. Soc., (3)8 (1958), 609–620.Google Scholar
  15. [15]
    V. M. Sidelnikov, О плотнейшей укладке шаров на поверхостиn-мерной евклидовой сферЫ и числе векторов двоичного кода с заданнЫм кодовЫм расстоянием.Докл. АН СССР,213 (1973), 1029–1032.Google Scholar
  16. [16]
    R. M. L. Tammes, On the origine of number and arrangement of the places of exit on the surface of pollen grains,Rec. Trav. Bot. Neerl.,27 (1930), 1–84.Google Scholar
  17. [17]
    A. Thue, Om nogle geometrisk talteoretiske Theoremer,Fordhl. Skand. Naturforsk.,14 (1892), 352–353.Google Scholar

Copyright information

© Akadémiai Kiadó 1978

Authors and Affiliations

  • K. Böröczky
    • 1
  1. 1.Department of GeometryEötvös Loránd UniversityBudapest

Personalised recommendations