Geometric & Functional Analysis GAFA

, Volume 5, Issue 6, pp 955–965 | Cite as

On manifolds locally modelled on non-riemannian homogeneous spaces

  • F. Labourie
  • S. Mozes
  • R. J. Zimmer


Homogeneous Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BL]Y. Benoist, F. Labourie, Sur les espaces homogènès modèles de variétés compactes, Pub. Math. I.H.E.S. 76 (1992), 99–109.Google Scholar
  2. [G]W. Goldman, Projective geometry on manifolds, Univ. of Maryland Lecture Notes, 1988.Google Scholar
  3. [R]J. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, New York, 1994.Google Scholar
  4. [Z1]R.J. Zimmer, Discrete groups and non-Riemannian homogeneous spaces, Jour. Amer. Math. Soc. 7 (1994), 159–168.Google Scholar
  5. [Z2]R.J. Zimmer, Topological superrigidity, preprint.Google Scholar
  6. [Z3]R.J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhauser, Boston, 1984.Google Scholar
  7. [Z4]R.J. Zimmer, Orbit equivalence and rigidity of ergodic actions of Lie groups, Ergodic Theory and Dynamical Systems 1 (1981), 237–253.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • F. Labourie
    • 1
  • S. Mozes
    • 2
  • R. J. Zimmer
    • 3
  1. 1.Ecole PolytechniqueC.N.R.S.PalaiseauFrance
  2. 2.Institute of MathematicsHebrew UniversityJerusalemIsrael
  3. 3.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations