Cosine families and abstract nonlinear second order differential equations

  • C. C. Travis
  • G. F. Webb


Differential Equation Order Differential Equation Cosine Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. Barbu, A class of boundary problems for second order abstract differential equations,J. Fac. Sci. Univ. Tokyo I A Math.,19 (1972), 295–319.Google Scholar
  2. [2]
    V. Barbu,Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International (Leyden. The Netherlands, 1975).Google Scholar
  3. [3]
    G. Da Prato andE. Giusti, Una caratterizzazione dei generatori di funzioni coseno astratte,Boll. Unione Mat. Italiana. 22 (1967), 357–362.Google Scholar
  4. [4]
    N. Dunford andJ. T. Schwartz,Linear Operators, Part I: General Theory, Interscience (New York, 1958).Google Scholar
  5. [5]
    H. O. Fattorini, Ordinary differential equations in linear topological spaces, I,J. Differential Equations,5 (1968), 72–105.Google Scholar
  6. [6]
    H. O. Fattorini, Ordinary differential equations in linear topological spaces, II,J. Differential Equations,6 (1969), 50–70.Google Scholar
  7. [7]
    H. O. Fattorini, Uniformly bounded cosine functions in Hilbert space,Indiana Univ. Math. J.,20 (1970), 411–425.Google Scholar
  8. [8]
    E. Giusti, Funzioni coseno periodiche,Boll. Unione Mat. Italiana,22 (1967), 478–485.Google Scholar
  9. [9]
    J. Goldstein, Semi-groups and hyperbolic equations,J. Functional Analysis,4 (1969), 50–70.Google Scholar
  10. [10]
    J. Goldstein, On a connection between first and second order differential equations in Banach spaces.J. Math. Anal. Appl.,30 (1970), 246–251.Google Scholar
  11. [11]
    J. Goldstein, On the convergence and approximation of cosine functions,Aequationes Math.,11 (1974), 201–205.Google Scholar
  12. [12]
    J. Goldstein,Semigroups of Operators and Abstract Cauchy Problems, Monograph, Tulane University (New Orleans, 1970).Google Scholar
  13. [13]
    T. Kato,Perturbation Theory for Linear Operators, Springer-Verlag (New York, 1966).Google Scholar
  14. [14]
    J. Kisyński, On operator-valued solutions of d'Alembert's functional equation, I,Colloquium Math.,23 (1971), 107–114.Google Scholar
  15. [15]
    Y. Konishi, Cosine functions of operators in locally convex spaces,J. Fac. Sci. Univ. Tokyo I. A. Math.,18 (1971/72), 443–463.Google Scholar
  16. [16]
    S. G. Krein,Lienar Differential Equations in Banach Spaces, Amer. Math. Soc. Translations of Math. Monographs, Vol.29 (Providence, 1971).Google Scholar
  17. [17]
    S. Kurepa, On some functional equations in Banach spaces,Studia Math.,19 (1960), 149–158.Google Scholar
  18. [18]
    S. Kurepa, A cosine funcational equation in Banach algebras,Acta Sci. Math. Szeged,23 (1962), 255–267.Google Scholar
  19. [19]
    V. Lakshmikantham,Differential Equations in Abstract Spaces, Academic Press (New York, 1972).Google Scholar
  20. [20]
    B. Nagy, On the generators of cosine operator functions,Publ. Math. Debrecen,21 (1974), 151–154.Google Scholar
  21. [21]
    B. Nagy, On cosine operator functions in Banach spaces,Acta Sci. Math. Szeged,36 (1974), 281–289.Google Scholar
  22. [22]
    B. Nagy, Cosine operator functions and the abstract Cauchy problem,Periodica Math. Hungar.,7(3) (1976), 15–18.Google Scholar
  23. [23]
    I. Segal, Non-linear semi-groups,Ann. Math.,78 (1963), 339–364.Google Scholar
  24. [24]
    M. Sova, Cosine operator functions,Rozprawy Matematiyczne,49 (1966), 1–47.Google Scholar
  25. [25]
    M. Sova, Semigroups and cosine functions of normal operators in Hilbert spaces,Časopis Pěst. Mat.,93 (1968), 437–458.Google Scholar
  26. [26]
    C. Travis andG. Webb, Existence and stability for partial functional differential equations,Trans. Amer. Math. Soc.,200 (1974), 395–418.Google Scholar
  27. [27]
    K. Yosida,Functional Analysis, Fourth Ed., Springer-Verlag (New York, 1974).Google Scholar

Copyright information

© Akadémiai Kiadó 1978

Authors and Affiliations

  • C. C. Travis
    • 1
  • G. F. Webb
    • 1
  1. 1.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations