The Visual Computer

, Volume 10, Issue 2, pp 116–124 | Cite as

A fast display method for volumetric data

  • Lisa Sobierajski
  • Daniel Cohen
  • Arie Kaufman
  • Roni Yagel
  • David E. Acker


Presented is a fast display method for volumetric data sets, which involves a slicebased method for extracting potentially visible voxels to represent visible surfaces. For a given viewing direction, the number of visible voxels can be trimmed further by culling most of the voxels not visible from that direction. The entire 3D array of voxels is also present for invasive operations and direct access to interior structures. This approach has been integrated on a low-cost graphic engine as an interactive system for craniofacial surgical planning that is currently in clinical use.

Key words

Volume rendering Surface tracking Culling Surgical planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artzy E, Frieder G, Herman GT (1981) The theory, design, implementation and evaluation of a three dimensional surface detection algorithm. Comput Graph Image Proc 15(1):1–24CrossRefGoogle Scholar
  2. Austin JD, Hook TV (1988) Medical image processing on an enhanced workstation. SPIE Mecical imaging II: image data management and display 914:1317–1324Google Scholar
  3. Cappelletti JD, Rosenfeld A (1989) Three-dimensional boundary following. Comput Vis Graph Image Proc 48:80–92CrossRefGoogle Scholar
  4. Chen LS, Herman GT, Reynolds RA, Udupa JK (1985) Surface shading in the Cuberille environment. IEEE Comput Graph Appl 5(12):33–43Google Scholar
  5. Cline HE, Lorensen WE, Ludke S, Crawford CR, Teeter BC (1988) Two algorithms for three-dimensional reconstruction of tomograms. Med Phys 15(3):320–327CrossRefGoogle Scholar
  6. Cohen D, Kaufman A (1990) Scan-conversion algorithms for linear and quadratic objects. In: Kaufman A (ed) Volume Visualization. IEEE, Los Alamitos pp 280–301Google Scholar
  7. Gordon D, Udupa, JK (1989) Fast surface tracking in threedimensional binary images. Comput Vis Graph Image Proc 45:196–214CrossRefGoogle Scholar
  8. Gravis A, Manson PN, Vannier MW, Rosenbaum A (1988) Post-traumatic orbit evaluation by three-dimensional surface reconstruction. Comput Med Imaging Graph 1:47–57CrossRefGoogle Scholar
  9. Herman GT, Liu HK (1978) Dynamic boundary surface detection. Comput Graph Image Pro 7:130–138Google Scholar
  10. Hoehne KH, Bernstein R (1986) Shading 3D-images from CT using grey-level gradients. IEEE Trans Med Imaging MI-5(1):45–57Google Scholar
  11. Kaufman A (1987) Efficient algorithms for 3D scan-conversion of parametric curves, surfaces, and volumes. Comput Graph 21(4):171–179MathSciNetGoogle Scholar
  12. Kaufman A (1988) Efficient algorithms for 3D scan-converting polygons. Comput and Graph 12(2):213–219CrossRefGoogle Scholar
  13. Kaufman A (1990) Volume Visualization, IEEE Computer Society Press Totorial, Los AlamitosGoogle Scholar
  14. Kaufman A, Bakalash R, Cohen D (1990a) Viewing and rendering processor for a volume visualization system. In: Grimsdale RL, Strasser W (eds) Advances in Graphics Hardware IV. Springer, Berlin Heidelberg New York, pp 171–178Google Scholar
  15. Kaufman A, Yagel R, Cohen D (1990b) Intermixing surface and volume rendering. In: Hoehne KH, Fuchs H, Pizer SM (eds) 3D imaging in medicine. Algorithms, systems, applications. Springer-Verlag, Berlin Heidelberg New York, pp 217–227Google Scholar
  16. Kong TY, Rosenfeld A (1989) Digital topology: Introduction and survey. Comput Vis Graph Image Proc 48:357–393CrossRefGoogle Scholar
  17. Kuhlman JE, Fishman EK, Ney DR, Magid D (1988) Complex shoulder trauma: three dimensional CT imaging. Orthopedics 8(8):1561–1563Google Scholar
  18. Lafferty CM, Sartoris DJ, Tyson R, Resnick D, Kursunglu S, Pate D, Sutherland D (1986) Acetabular alterations in untreated congential dysplasia of the hip: computed tomography with multiplanar re-formation and three dimensional analysis. J Computer Assisted Tomography 10(1):84–91Google Scholar
  19. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(4):163–169Google Scholar
  20. Pettigrew J, Roberts D, Riddle R, Udupa J, Collier D, Ram C (1985) Identification of an anteriorly displaced meniscus in vitro by means of 3-D image reconstruction. Oral Surg Oral Med Oral Pathol 59:535–542Google Scholar
  21. Tiede U, Hoehne KH, Bomans M, Pommert A, Riemer M, Wiebecke G (1990) Investigation of medical 3D-rendering algorithms. IEEE Comput Graph Appl 10(3):41–53CrossRefGoogle Scholar
  22. Toth BA, Ellis DS, Stewart WB (1988) Computer-designed prothesis for orbitocranial reconstruction. Plastic and Reconstructive Surgery 81(3):315–322Google Scholar
  23. Udupa JK, Odhner D (1990) Interactive surgical planning: high-speed object rendition and manipulation without specialized hardware. Proc Visualization in Biomedical Computing 1:330–335Google Scholar
  24. Udupa JK, Hung HM, Chen LS (1986) Interactive display of 3D medical objects. NATO ASI Series F 19:450–456Google Scholar
  25. Westover L (1990) Footprint evaluation for volume rendering. Comput Graph 24(4):367–376Google Scholar
  26. Zucker SW, Hummel RA (1981) A three dimensional edge operator. IEEE Trans Pattern Analysis and Machine Intelligence PAMI 3(3):324–331Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Lisa Sobierajski
    • 1
  • Daniel Cohen
    • 1
  • Arie Kaufman
    • 1
  • Roni Yagel
    • 1
  • David E. Acker
    • 2
  1. 1.Department of Computer ScienceState University of New York at Stony BrookStony BrookUSA
  2. 2.MediCAD CorporationSetauketUSA

Personalised recommendations