The Visual Computer

, Volume 3, Issue 6, pp 323–328 | Cite as

Computing the volume of the union of spheres

  • David Avis
  • Binay K. Bhattacharya
  • Hiroshi Imai


OnO(n2) exact algorithm is given for computing the volume of a set ofn spheres in space. The algorithm employs the Laguerre Voronoi (power) diagram and a method for computing the volume of the intersection of a simplex and a sphere exactly. We give a new proof of a special case of a conjecture, popularized by Klee, concerning the change in volume as the centres of the spheres become further apart.

Key words

Union of Spheres Volumes Laguerre Voronoid diagram Power diagram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aurenhammer F (1987) Power diagram: properties, algorithms and applications. SIAM J Comput 16:78–96Google Scholar
  2. 2.
    Edelsbrunner H, Seidel R (1986) Voroni diagrams and arrangements. Discrete Comput Geom 1:25–44Google Scholar
  3. 3.
    Imai H, Iri M, Murota K (1985) Voroni diagram in the Laguerre geometry and its applications. SIAM J Comput 14(1):93–105Google Scholar
  4. 4.
    Iri M, Koshizuka T, Asano T, Murota K, Inai H, Suzuki A, Nakamori M, Yomona H, Okabe A (1986) Computational geometry and geographical data processing (Jpn). Kyoritsu-Shuppan, Tokyo [bit Suppl]Google Scholar
  5. 5.
    Klee V (1979) Some unsolved problems in plane geometry. Math Mag 52(3):131–145Google Scholar
  6. 6.
    Lieb EH (1982) Monotonicity of the molecular electronic energy in the nuclear coordinates. J Phys B 11(18):L63–L66Google Scholar
  7. 7.
    Lieb EH, Simon B (1978) Monotonicity of the electronic contribution to the Born-Oppenheimer energy. J Phys B 11(18):L537–L542Google Scholar
  8. 8.
    Preparata FP, Shamos MI (1985) Computational geometry: an introduction. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • David Avis
    • 1
  • Binay K. Bhattacharya
    • 2
  • Hiroshi Imai
    • 3
  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada
  2. 2.School of Computer ScienceSimon Fraser UniversityBurnabyCanada
  3. 3.Department of Computer Science and Communication EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations